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Emergent memory from tapping collisions in active
granular matter
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In an equilibrium thermal environment, random elastic collisions between background par-

ticles and a tracer establish the picture of Brownian motion fulfilling the celebrated Einstein

relation between diffusivity and mobility. However, extensions of the Einstein relation to link

dissipation, fluctuations, and nonequilibrium dynamical mechanisms in active matter systems

are still debated. Here, we investigate experimentally the impact of an active background on a

passive tracer using vibrationally excited active particles, that result in multiple correlated

tapping collisions with the tracer, for which a persistent memory emerges in the dynamics.

The system is described by a generalized active Einstein relation that constrains fluctuations,

dissipation, and effective activity, by taking the emerging tracer memory into account. Since

the resulting persistence can largely be tuned by the environmental density and motility, our

findings can be useful to engineer properties of various active systems in biomedical appli-

cations, microfluidics, chemical engineering, or swarm robotics.
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Active matter comprises a new material class of agents that
self-propel by converting energy from their environment
into directed motion1–3. Important examples are living

systems, such as flocks of birds4, schools of fish5, and swarming of
bacteria6–8, or artificial particles, like drones9, self-propelling
robots10–12, active granulates13–16, spinners17–19, and colloidal
microswimmers20,21. Due to their autonomous motion, active
particles represent a system far from equilibrium22,23 and behave
fundamentally differently from equilibrium systems like thermal
gases or liquids formed by passive particles.

In thermal systems, when a tracer is surrounded by an envir-
onment of particles, it is kicked around by collisions, constantly
exchanging momentum and energy with said environment. In a
thermal equilibrium background, the collisions are elastic
(Fig. 1a) and the tracer is hit stochastically from all directions.
Typically, for tracer sizes larger than those of the environmental
particles, the resulting dynamics of the tracer is random Brow-
nian motion24,25 as established by Smoluchowski and Einstein
more than a century ago26. In this case, the tracer moves with
negligible memory duration, completely forgetting the direction
of the last kick by the time it experiences a new one. In other
words, the directions of any two sequential collisions are not
correlated. Inertia is negligible in these systems, unless ultra-small
timescales are resolved27, and does not qualitatively affect the
collision behavior in equilibrium.

In an inertial active environment the situation is fundamentally
different: Active particles hit the tracer and bounce back at first by
momentum conservation. Soon, however, they recover due to
their self-propulsion, and may return to kick the tracer again.
This sequence of events can occur multiple times and sequential
collision directions are thus highly correlated. Despite this
intuitive mechanism, systematic experimental studies on particle-
resolved collisions in inertial active backgrounds are still

unexplored. Their effects on the thermodynamic description of a
tracer are therefore unknown.

To describe equilibrium systems, Einstein proposed and
derived a famous fundamental relation, known sometimes as the
Einstein-Sutherland-Smoluchowski relation25,26,28, that links a
system’s fluctuation and dissipation: The product of mobility
(dissipation) and system temperature (fluctuations) equals the
tracer’s diffusivity. The validity of the Einstein relation has been
confirmed for passive colloids29, while its violation has been
experimentally observed in systems intrinsically out of
equilibrium28, such as granulates30–33, glasses34, and
bacteria35–37. Intuitively, the slow relaxation of glasses or the
extra injection of energy due to a non-equilibrium mechanism for
granular particles and bacteria breaks the Einstein relation by
increasing the fluctuations and changing the system’s dissipative
properties. In general, this violation can be due to memory effects
induced by mechanisms, such as non-reciprocity38, interactions
with chemical trails39, viscoelasticity40, and particle collisions41.
While there exists no general theory for systems that are intrin-
sically out of equilibrium, such a violation in active systems has
been recently interpreted as an effective temperature42,43. How-
ever, extensions of the Einstein relation, linking dissipation,
fluctuations, and non-equilibrium dynamical mechanisms, con-
stitute an active field of research28,44–49.

Here, we investigate the impact of an active environment on a
passive tracer on the fundamental particle-resolved level, by
observing the paths of a tracer in a bath of vibrationally excited
active granular particles50,51, so-called vibrobots. Resolving the
collisions between the tracer and active particles, we experimentally
observe that the combination of bounce-back effects and activity
results in multiple collisions of the same active particle on the tracer
with an additional alignment mechanism. We refer to these mul-
tiple collision events as tapping collisions (Fig. 1b). These tapping
collisions are a mark of the non-equilibrium nature of the bath and
have a profound influence on the tracer dynamics. In fact, they
generate memory in the tracer motion resulting in a breakdown of
the conventional Einstein relation. Here, we propose a generalized
active Einstein relation by incorporating the emergent activity
explicitly, and present confirmation of our theory by particle-
resolved experimental data. We remark that a similar Einstein
relation has been numerically investigated in ref. 49, but the
explanation of our experimental findings requires to account for
the additional rotational dynamics characterizing our vibrobots.
This induces an effective, increased persistence time and allows us
to formulate an Einstein relation for the rotational motion.

We demonstrate that the memory time and the persistence
length of the tracer can be efficiently tuned by the properties of
the active environment, such as density and motility. This has two
important consequences: Firstly, our findings can be useful to
engineer tracer dynamics in various active backgrounds, with
potential, future applications for two-dimensional swarm
robotics9,10. Secondly, and more fundamentally, we can tune a
tracer with a prescribed memory almost at will by adjusting the
environment accordingly. This provides a realization of funda-
mental stochastic models for self-propelled particle motion52–56.

Results
Experimental system. We experimentally study the dynamics of
a passive tracer in a bath of inertial active particles. Passive and
active particles are 3D-printed vibrobots (see Fig. 2a, b) driven by
sinusoidal vibrations provided by an electromagnetic shaker to a
circular plate, which the particles are free to explore (see Fig. 2c).
Under these conditions, particles perform quasi-two-dimensional
dynamics since their motion along the vertical direction is not
relevant. What differentiates the tracer from the active bath

Fig. 1 Tracer dynamics in a (non-)equilibrium environment. Tracer and
bath particles are represented by large and small disks, respectively. a The
equilibrium scenario is characterized by elastic collisions that conserve
energy and momentum. After a collision with the environmental particle,
the tracer behaves as a passive unit subject to Brownian motion and
dissipation. b The non-equilibrium environment formed by active vibrobots
does not conserve energy, which is continuously injected into the system
by the active force. Particles of the environment display tapping collisions,
i.e., collisions are persistent and the particles of the environment align
around the tracer. As a result, the tracer performs an effective active
motion. Note that, in general, collisions of granular particles are partially
inelastic. However, this does not alter the present picture.
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particles are their respective shapes, described in detail in the
“Methods” section, along with resultant physical properties. An
active particle’s tilted elastic legs (Fig. 2b) provide an asymmetry
in the direction of relaxation, thus converting energy, harvested
from impacts with the vibrating plate and stored as elastic
deformation, into directed motion. At long times, its motion is
randomized due to surface inhomogeneities and bouncing
instabilities that produce small random reorientations of the
particle57. Its motion closely resembles the active Brownian
one3,58,59, but with non-negligible inertia60. In contrast, the
passive tracer (Fig. 2a) has much thicker and symmetrical legs,
providing no net self-propulsion by this principle, acting instead
as an underdamped Brownian particle. The radius R of the pas-
sive tracer is chosen as twice the radius r of the active bath
particles, i.e., R= 2r. In our study, we vary the packing fraction
ϕ ¼ r2Na=R2 of the environment, where Na is the number of
active particles and R is the radius of the circular plate, deter-
mining the system size.

Snapshots of the experiment are reported for ϕ= 0, 0.15, 0.3 in
Fig. 2d–f, corresponding ~ 80 s long trajectories of the tracer are
displayed in Fig. 2g–i, and recordings of the system’s full
dynamics are shown in Supplementary Movies 1–3, respectively.
A single isolated tracer driven by the shaking plate performs a
random isotropic motion that mimics inertial Brownian motion
with a diffusion constant Dt. In the presence of an active bath,
and (to a point) as said bath’s packing fraction ϕ grows, the
passive tracer explores an ever larger area in the same time
interval, indicating an enhanced diffusivity. Intuitively this can be
explained by the increasing number of collisions with the active
particles that transfer additional energy and momentum to the
tracer. However, upon close inspection, the observed scenario
differs significantly from a simple enhancement of Dt: The
trajectories of the tracer display an increasing degree of
persistence for short times (zooms in Fig. 2g–i) and approach a

diffusive motion only on longer timescales. The passive tracer
thus performs a persistent motion typical of self-propelled objects
and behaves as an active unit whose inertia cannot be neglected.
This effect is purely induced by the non-equilibrium (active) bath
with no counterpart in the equilibrium (passive) case.

Persistent tapping collisions. In a thermal background at equi-
librium, particles of the environment collide, transfer momentum
to the tracer, and depart again. The random kicks provided by
bath particles induce Brownian motion on the tracer this way. In
an active environment, this scenario is violated, because particles
are characterized by a degree of persistence that allows them to
perform non-instantaneous interaction events. In the absence of
inertia, active particles attach to walls and obstacles for a typical
time61,62 and, consequently, an overdamped active particle would
persistently push the tracer before moving away. In contrast, here
we show that the interplay between inertia and activity of the bath
particles induces several recollisions during these non-
instantaneous particle-particle interactions. We refer to this
phenomenon as tapping collisions. These also manifest as repe-
ated bouncing events observed during the accumulation of iner-
tial active particles near walls63,64.

Our experiments provide a controlled setting to study
temporally resolved tapping collisions and their consequences
on the tracer dynamics. Figure 3a shows one such typical event in
the trajectory of an active vibrobot in the vicinity of the passive
one, obtained from experimental data for ϕ= 0.075. In each
individual impact, the active vibrobot exchanges momentum with
the tracer and bounces back. Then it swiftly recovers due to its
own activity and accelerates once more roughly towards the
target, likely to collide with the tracer again. This picture is
confirmed in Fig. 3b, where we show measured distances between
the passive tracer and three individual active particles as a
function of time. These recollisions prolong the duration of

Fig. 2 Experimental setup: passive tracer in an inertial active bath. a, b Photos and diagrams of passive tracer and active vibrobots, respectively. White
spots indicate a reference angle for the passive tracer and the orientational angle for active particles. c Photo of the shaker and plate where the motion
takes place. d–f Captured images of the passive tracer in a bath of active particles at packing fractions ϕ= 0, 0.15, 0.3, respectively. Here, the white scale
bars read 30 mm. Corresponding ~80 s long tracer trajectories are shown in (g–i), with a color gradient denoting the total kinetic energy of the particle
K ¼ Kt þKr, given by the sum of the translational and rotational contributions. Trajectories show an emergent memory for the active bath that results in
correlated motion. Here, the black scale bars read 55 mm.

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-024-01540-w ARTICLE

COMMUNICATIONS PHYSICS |            (2024) 7:52 | https://doi.org/10.1038/s42005-024-01540-w |www.nature.com/commsphys 3

www.nature.com/commsphys
www.nature.com/commsphys


particle-tracer interactions, resulting in what can be effectively
interpreted as persistent collisions. To quantify this phenomenon,
Fig. 3c displays the empirical probability Prob(Nrc) that an active
particle experiences Nrc impacts with the tracer during a single
tapping collision. Figure 3d shows the empirical probability P(tc)
that a total persistent collision event of a character like shown in
Fig. 3b should last for as long as tc. Recollisions are frequent and
the total duration of tapping collisions is significantly larger than
that of microscopic collisions typical of granular matter65.
Prob(Nrc) peaks at Nrc ~ 10, has an average value 〈Nrc〉 ≈ 20,
and a long tail. A similar shape is observed in P(tc) with an
average recollision time of 〈tc〉 ≈ 0.9 s.

In the trajectory reported in Fig. 3a (and similar ones), we also
observe a sliding or self-alignment of the active particle along the
passive tracer: After a bouncing event, the active vibrobot aligns
its velocity to the tracer surface as if it was subject to an effective
alignment interaction63. This is consistent with our initial picture
illustrated in Fig. 1, and can be explained by frictional contact
forces between the particles. Such forces would cause a torque on
the active particle inducing its reorientation with respect to the
surface of the passive tracer66.

Summarizing, in contrast to the typical quasi-instantaneous
elastic (or non-elastic) collisions between passive particles, the

phenomenon of tapping collisions shows two characteristic, non-
trivial elements: Persistence and effective alignment. Partial
inelasticity of the collisions does not play a crucial role. As long
as a sufficient fraction of total momentum is conserved, at most
the number of bouncing events is reduced through dissipation.
The tapping phenomenon has consequences on the resulting
tracer motion, as we elaborate in the following.

Momentum transfer during a tapping collision. The right hand
panels in Fig. 3 schematically show the effect of persistent tapping
collisions on the tracer dynamics: Fig. 3e shows how multiple
recollision events induce an effective activity on the translational
dynamics of the tracer. The numerous bouncing events (recolli-
sions) from an active particle moving at a constant speed to the
passive tracer induce repeated tapping kicks from roughly similar
directions. Each transfers translational momentum from the
active to the passive particle. In this way, despite the presence of
an internal friction force that dissipates part of the kinetic energy,
the passive tracer nevertheless accumulates momentum and dis-
plays a net persistent motion. Figure 3f shows how the large size
of the tracer allows active particles that come in for a strafing
impact to transfer angular momentum during each collision as
well. Each recollision then contributes to a similarly accumulating

Fig. 3 Collision between active particles and passive tracer. a Time evolution of a tapping collision between an active vibrobot (orange disk) and the
passive tracer (light blue disk) in the x, y plane. Black arrows denote the velocity of the active particle while the red line tracks its trajectory. The scale bars
reads 15 mm. b Relative distance between an active particle and the passive tracer as a function of time, t, for three different trajectories denoted by
different colors. The time is shifted to focus on the beginning of one collision event in the three cases. Recollisions, bouncing events, and the total duration
of the collision are marked in each graph. c Probability Prob(Nrc) of observing a number Nrc of recollisions during a collision (histogram). d Probability P(tc)
of observing a collision lasting a time tc (blue points). Both in (c) and (d), dashed black lines are obtained by fitting the function f(x)∝ e−x/axb where a and
b are fitting parameters. The vertical black lines in (c) and (d) mark the average 〈Nrc〉 and 〈tc〉, respectively. e, f Schemes of the collisions, showing the
tapping scenario. e and f outline the persistent transfer of translational and rotational momentum from the active to the passive particle, respectively.
a–d are obtained from experimental data with ϕ= 0.075, while (e) and (f) are schematic illustrations. Therefore, in the latter case, arrows and disks are
fictitious representation of particles' velocities and positions to highlight the effects of tapping collisions. Active and passive particles are represented by
orange and blue disks, respectively.
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effective torque on the passive tracer, accelerating its rotational
motion.

These two effects crucially affect both the short and, quite
surprisingly, the long-time behavior of the passive tracer. In the
following sections, we take a closer look at the statistical
properties of the trajectories and illustrate the occurrence of
persistent long-time correlations. This has consequences on the
relation between the effective diffusion coefficient of the tracer
and the stationary velocity distribution of the active bath, whence
we derive a generalized active Einstein relation.

Translational dynamics of the tracer. In contrast to the bath’s
active vibrobots, the “activated” tracer does not move at constant
speed nor aims to move in a definite direction with respect to its
orientation. Therefore, a common model such as active Brownian
particles3,59 is not suited to describe its dynamics. Here, we
demonstrate by experiments and theory—through an explicit
coarse-graining of the microscopic dynamics—that the transla-
tional motion of the tracer can be accurately modeled by the
inertial active Ornstein-Uhlenbeck particle (AOUP) dynamics
heuristically introduced in refs. 67,68.

In Fig. 4a, the steady-state distribution P(V) of a Cartesian
component of the velocity V= Vx is plotted for several values of
the packing fraction ϕ. The shape of P(V) is described by a

Gaussian profile, both with and without a bath. By contrast,
individual active vibrobots are characterized by a double peak
distribution, caused by their typical speed induced by the active
force60. This difference signifies that our tracer cannot be fully
described by an inertial active Brownian model while the inertial
AOUP is a more suitable dynamics to reproduce its behavior (see
also the “Methods”). Here, collisions broaden P(V), inducing a
monotonic increase of the translational kinetic energy of the
tracer, Kt ¼ MhV2i=2, where M is the mass of the passive tracer
(see Fig. 4b). Intuitively, a larger packing fraction ϕ means more
collisions per unit of time which transfers more energy from the
bath to the tracer, thus enhancing its translational motion. For
small ϕ, the behavior of KtðϕÞ can be understood through a
scaling argument

Kt � DtΓt � ϕ; ð1Þ
where Γt and Dt are the friction and translational diffusion
coefficients of the tracer, and thus DtΓt corresponds to its kinetic
temperature in the absence of active particles (ϕ= 0). We refer to
the average kinetic energy as temperature here in analogy to its
thermodynamic counterpart. However, since the origin of
fluctuations in our system is athermal, it depends only on the
kinetic degrees of freedom of the tracer particle and their
excitation from the vibrating plate, independently of the actual

Fig. 4 Statics and dynamics of the tracer. a Probability distribution P(V) of a Cartesian component of the velocity for several values of the packing fraction
ϕ. b Kinetic energy Kt ¼ MhV2i=2 as a function of ϕ. c Autocorrelation of the velocity CV(t) for several values of ϕ. d, e Typical times of CV(t) calculated
from the profile αe�t=τ1 þ βe�t=τ2 as a function of ϕ. f Probability distribution of the angular velocity P(Ω) for several values of ϕ. g Rotational kinetic energy
Kr ¼ JhΩ2i=2 as a function of ϕ. h Angular velocity autocorrelation CΩ(t) for several values of ϕ. i Typical time of CΩ(t), extracted from the profile � e�tτΩ

as a function of ϕ. j Ratio 〈Ω2〉τΩ as a function of ϕ. k, l Mean-square displacement MSDðtÞ ¼ h XðtÞ � Xð0Þð Þ2i, and mean-square angular displacement
MSADðtÞ ¼ h ΦðtÞ �Φð0Þð Þ2i, for several values of ϕ. m Diffusion coefficients, Deff

t (left y-scale) and Deff
r (right y-scale), as a function of ϕ. The units of Deff

t

and Deff
r are 1.18 mm2 s−1 and 1.18 rad2 s−1, respectively. n Einstein relations for the rotational degree of freedom, hΩ2iτΩ=Deff

r . o Conventional Einstein
relation for the translational degree of freedom, hV2iM=ðΓrDeff

t Þ. p Active Einstein relation for Deff
t , given by Eq. (7). In all the panels of this figure, points

reflect experimental data, solid colored lines are exponential fitting functions justified by our coarse-grained models, black dashed lines denote linear or
constant scaling, black dashed-dotted lines evidence ballistic behavior, and solid black lines are guides for the eyes. In (b), (d), (e), (g), (i), (j), (m–p), error
bars represent standard deviation.
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ambient conditions. Details on this scaling relation are reported
in the “Methods” section. A deviation from the linear scaling is
observed at packing fractions ϕ≳ 0.3. At these high densities,
many active particles collide simultaneously with the tracer from
various directions (see Supplementary Movie 3), so that their
impacts balance out and only induce additional dissipation into
the tracer’s internal degrees of freedom.

To characterize the tracer’s translational motion we evaluate
the velocity autocorrelation CV(t)= 〈V(t) ⋅V(0)〉. As seen in
Fig. 4c, CV(t) shows a single exponential decay regime for ϕ= 0 as
in equilibrium, but two distinct decay regimes for ϕ > 0. The
short-time regime does not depend on ϕ (Fig. 4d) and is
determined by the passive tracer’s properties (ϕ= 0). With the
translational friction coefficient Γt the characteristic decay time is
τ1 ≈M/Γt. The long-time regime is induced by the active bath and
depends non-monotonically on the packing fraction as evident
when plotting its typical time τ2 against ϕ, as we did in Fig. 4e. As
τ2 is determined by the inverse of the active vibrobots’ rotational
diffusion coefficient, it is an order of magnitude larger than the
inertial time of the tracer, i.e., τ2 � 1=Da

r � 10τ1. The full
expression for τ2 accounting for the effect of the rotational inertia
is reported in the “Methods” (see Eq. (17)). Intuitively, the
increase in the number of collisions is responsible for the
enhancement of the persistence time preventing the tracer to
rapidly dissipate energy gained from any given collision.
However, at larger ϕ≳ 0.3 this effect is counteracted by
simultaneous collisions with different bath particles, which
randomize the direction of the tracer’s net motion and lower τ2.

By approximating the volume exclusion interaction between
the passive tracer and active vibrobots as harmonic springs, we
can derive the tracer’s effective translational dynamics, coarse-
graining the bath’s degrees of freedom by a non-Markovian noise
term. As shown in the “Methods” section, this results in an
underdamped coarse-grained dynamics

M _Vþ ΓtVþ Γt
ffiffiffiffiffiffiffi
2Dt

p
ξ ¼ ΓtV0η ð2Þ

known in the literature as inertial active Ornstein-Uhlenbeck
particle (AOUP). In this model, ξ is a white noise term with zero
average and unit variance. The friction coefficient Γt, and the
diffusion coefficient Dt are measured in the absence of the active
bath and, in the experiment, are due to friction with the substrate
and the shaker’s oscillation amplitude. Here we model the friction
as a Stokes force rather than a constant one. Indeed, for a similar
setup65, the velocity of a kicked vibrobot has consistently revealed
an exponential temporal decay rather than a simple linear
decrease. The persistent tapping collisions introduce an addi-
tional, non-Markovian noise term, ΓtV0η, which provides to the
tracer a typical speed V0(ϕ), depending on the packing fraction
and the active vibrobots’ inherent self-propulsion. The stochastic
term η is an Ornstein-Uhlenbeck process with characteristic time
τ2 and autocorrelation

hηðtÞηð0Þi � e�t=τ2 : ð3Þ
Our coarse-grained model (2) for the translational dynamics of
the tracer can be solved analytically and reproduces the
experiments’ static and dynamic observables to within statistical
error. Indeed, it gives rise to a Gaussian velocity distribution and
a velocity autocorrelation CV(t) characterized by the sum of two
exponentials

CV ðtÞ � e�t=τ1 þ Ae�t=τ2 ; ð4Þ
where A is a coefficient depending on the parameters of the
system (see details in the “Methods” section).

Since our theoretical findings are consistent with the experi-
mental results, the effective translational motion of the tracer in

our experiments constitutes the first experimental realization of
the inertial AOUP67,68. Here, the activity originates directly from
a non-Markovian memory kernel η in the equation of motion,
which arises from the tapping collisions with the particles of the
active bath. In contrast to active Brownian motion, here there is
no coupling between orientational and translational degrees of
freedom.

Rotational dynamics of the tracer. To quantify the effect of the
active bath on the tracer’s rotational dynamics, we analyze the
distribution P(Ω) of the angular velocity Ω. As shown in Fig. 4f,
P(Ω) has an almost-Gaussian shape for several values of the
packing fraction ϕ, with only minor deviations, which are
expected for driven dissipative granular systems69–71. Here, we
neglect these effects, and assume that the motion is sufficiently
well-described by a Gaussian profile, and fully characterized by
the tracer’s rotational kinetic energy Kr ¼ JhΩ2i=2 with moment
of inertia J. KrðϕÞ displays a non-monotonic profile as a function
of ϕ (see Fig. 4g). In the absence of active particles (ϕ= 0), we
find that Krð0Þ � DrΓr=J , where Γr and Dr are the isolated tracer’s
rotational friction and diffusion coefficients, respectively. The
number of tapping collisions grows when ϕ increases. Much like
in the case of translation, angular momentum, too, is transferred
to the tracer, as described in Fig. 3f, and should intuitively be
proportional to the number of collisions in the dilute regime
(0 ≤ ϕ≲ 0.3). In contrast, for ϕ≳ 0.3, simultaneous collisions
occur and balance each other by providing clockwise and coun-
terclockwise torques, leaving only friction to reduce the tracer’s
net rotational kinetic energy.

The autocorrelation CΩ(t)= 〈Ω(t)Ω(0)〉 of angular velocity,
shown in Fig. 4h for different values of ϕ, displays an exponential-
like shape with typical time τΩ, which can be interpreted as the
ratio between the moment of inertia J and an effective rotational
friction coefficient Γeffr . As seen in Fig. 4i, τΩ depends non-
monotonically on the packing fraction ϕ. For ϕ= 0, the case of
passive Brownian motion is recovered and τΩ(0) ~ J/Γr. In the
dilute regime (ϕ≲ 0.3), the autocorrelation time τΩ increases as a
function of ϕ, because rotational velocity is accumulated during a
tapping collision. In particular, this effect is induced by the sliding
motion of the vibrobots around the passive tracer (Fig. 3f). The
active bath enhances the tracer particle’s effective rotational
inertia up to twice its passive value. Consequently, the tracer
evolves as if subject to an effective rotational friction coefficient
Γeffr < Γr. Finally, for ϕ≳ 0.3, simultaneous collisions hinder this
effect reducing τΩ and, thus, increasing Γeffr .

Since rotational dynamics are only determined by a single
relevant timescale, with almost Gaussian properties and expo-
nential autocorrelation, an appropriate theoretical description
consists of an underdamped Langevin equation of the form

J _Ω ¼ �ΩΓeffr þ Γeffr

ffiffiffiffiffiffiffiffiffiffi
2Deff

r

q
ξr; ð5Þ

where ξr is a white noise term with zero average and unit variance
and Deff

r represents an effective rotational diffusion coefficient. To
provide additional information on the non-monotonic depen-
dence on the packing fraction, Fig. 4j shows the experimental
ratio between Kr and τΩ as a function of ϕ. We find that
KrðϕÞ=τΩðϕÞ � Krð0Þ=τΩð0Þ is constant, i.e., the rotational kinetic
energy and rotational time have the same dependence on ϕ. Since

Kr=τΩ ¼ Deff
r ðΓeffr Þ2=J , the effective rotational diffusion coefficient

scales as Deff
r / 1=ðΓeffr Þ2 / τ2Ω.

To summarize, the effective inertial AOUP motion (2) for the
translational dynamics is accompanied by an intrinsic rotational
motion (5) enhanced by tapping collisions. This effect is due to
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the tangential motion of active particles along the surface of the
tracer that leads to additional rotation in its dynamics.

Active Einstein relations. In equilibrium, a particle’s diffusion
coefficient is determined by its thermal energy and mobility via
the Einstein-Sutherland-Smoluchowski relation28,72. This result
implies a deep connection between fluctuations which induce
diffusion, and dissipation due to the friction coefficient, i.e., the
inverse of mobility. Out of equilibrium the Einstein relation is
usually violated, because the diffusion is not only determined by
thermal fluctuations but also by additional non-equilibrium
mechanisms. In our system we expect that such a violation is
caused by the extra source of energy transferred from the
environment to the tracer through persistent tapping collisions.

While the Einstein relation is also violated in our experiments,
the shape of the autocorrelation functions and our effective
description allow us to reconcile the relation with the notion of
emergent activity. To this end, we derive and experimentally
verify generalized active Einstein relations for rotational and
translational tracer dynamics: Both equilibrium and non-
equilibrium fluctuations of the system, stored as translational
and rotational kinetic energy, determine diffusive properties of
the tracer through friction coefficients (related to equilibrium
dissipation) and characteristic persistence times (quantifying the
departure from equilibrium54).

To construct our active Einstein relations, we first calculate the
mean squared displacement MSDðtÞ ¼ h XðtÞ � Xð0Þð Þ2i and the
mean squared angular displacement, MSADðtÞ ¼ h ΦðtÞ �Φð0Þð Þ2i
from the tracer positions X(t) and orientations Φ(t), as shown in
Fig. 4k and Fig. 4l, respectively. From the linear behavior in the long
time limit, we measure and display in Fig. 4m the effective
translational and rotational diffusion coefficients Deff

t and Deff
r

under the influence of the active bath. As the packing fraction ϕ
grows,Deff

t shows a monotonic increase. Although collisions always
enhance the rotational diffusivity with respect to ϕ= 0, Deff

r
qualitatively displays a similar non-monotonicity as τΩ (see Fig. 4i).
We can thereby identify an optimal ϕ that maximizes the angular
diffusion properties.

From the similar behavior of Deff
r and τΩ we suggest the

Einstein relation

Deff
r ¼ hΩ2iτΩ ð6Þ

for the rotational dynamics, which is experimentally validated in
Fig. 4n for the values of ϕ analyzed in this work. The enhanced
angular fluctuations induced by collisions cause an effective
rotational diffusivity that is consistent with the scenario of an
effective angular temperature depending on ϕ. However, since
our system is entirely driven athermally, this effective tempera-
ture is not related to the thermal properties of the bath. On the
contrary, the analogous conventional Einstein relation for the
translational diffusivity is strongly violated as ϕ is increased.
Indeed, in Fig. 4o, we observe Deff

t ≥ hV2iM=Γt. This violation is
due to the additional correlated injection of energy to the tracer
dynamics by tapping collisions. In addition, it is a dynamical
signature of non-equilibrium effects, such as the second decay
regime in the time shape of CV(t). This also reflects the
breakdown of the effective temperature scenario as a consequence
of the non-equilibrium properties of the active bath.

Using the effective dynamics (2), we derive the generalized
active Einstein relation

Deff
t ¼ �Dtτ2

Γt
M

þ hV2i τ2 þ
M
Γt

� �
ð7Þ

expressing the kinetic fluctuations of the tracer as a function of
the translational diffusion coefficient (see “Methods” section for

further details). This prediction is verified by experimental data in
Fig. 4p, revealing a good agreement within the statistical error. In
contrast to the conventional Einstein relation, Eq. (7) involves not
only equilibrium dissipation through the inertial time τ1=M/Γt,
but also the collision-induced active force, through the persis-

tence time τ2 � 1
Da
r

1þ Ja
γr
Da
r

� �
. In other words, it accounts for

both typical times governing the decay of the velocity
autocorrelation CV(t). Our generalized Einstein formula (7)
contains an equilibrium term 〈V2〉M/Γt and two non-
equilibrium terms 〈V2〉τ2−Dtτ2M/Γt > 0. Indeed, they vanish in
the equilibrium limit τ2→ 0, so that the conventional Einstein
relation Dt= 〈V2〉M/Γt is recovered. The relevance for applica-
tions is that τ2 can be approximated by the persistence time of the

active particle τ2 � 1
Da
r

1þ Ja
γr
Da
r

� �
, where the correction is due to

the rotational dynamics of the vibrobots. which allows an
estimate of the effective diffusion from the bulk behavior at low
densities.

Validity of Einstein relation. To extend the generality of our
results, we perform experiments by changing the frequency f and
the amplitude A of the shaker, that control the energy
E= (2πf)2A2/2 (normalized by the total mass of the load) injected
in the system. The behavior shown in Fig. 4 is preserved quali-
tatively in all explored configurations: Active particles perform
tapping collisions against the tracer, which in turn behaves as an
active particle characterized by a persistent trajectory and
described by the inertial active Ornstein-Uhlenbeck model.
Indeed, the autocorrelation of translational and angular velocity
maintains the same exponential structure, with two and one
temporal decay regimes, respectively.

Our theoretical results and, in particular, the violation of the
conventional Einstein relation, as well as the validity of the
generalized active Einstein relation, are shown in Fig. 5 as a
function of E for three different values of the packing fraction of
the active bath. At ϕ= 0, in the absence of the active bath, the
tracer behaves like a passive particle for every E and thus the
conventional Einstein relations for rotational (Fig. 5a) and
translational dynamics (Fig. 5d) hold. In contrast, for ϕ= 0.15
and ϕ= 0.3, the tracer behaves like an effective active Ornstein-
Uhlenbeck particle with inertia. As a result, the Einstein relation
for the rotational dynamics holds with the corresponding effective
rotational diffusion coefficient Deff

r (Fig. 5b, c) while the
conventional Einstein relation for the translational dynamics is
strongly violated (Fig. 5e, f), i.e., Deff

t ≥ V2
� �

M=Γt. The general-
ized active Einstein relation is verified for all combinations of (f,
A) and ϕ > 0 extending the applicability of our theoretical results
(Fig. 5g, h).

Difference between active and passive baths. To investigate the
unique effects of the active bath on the tracer dynamics, we
compare our results with those obtained in the presence of a
passive bath at different packing fractions ϕ. A passive bath is
realized by replacing active vibrobots with passive particles,
whose legs are perpendicular to the plane of motion (Fig. 6a, b).
The particle’s shape is fully symmetric and there is, by design, no
significant preferential direction in the motion. These symmetric
vibrobots behave as passive Brownian particles subject to inertia,
without relevant persistence in the particle trajectory. As a con-
sequence, bath particles generally depart from the tracer after a
single impact and do not return for a tapping collision. A tracer in
a passive bath (Fig. 6c) displays a Brownian trajectory with
negligible persistence that resembles that observed at ϕ= 0
(Fig. 6d).
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The tracer’s effective static and dynamic behaviors in the
presence of a passive bath are investigated in Fig. 6e–k. In Fig. 6e
and Fig. 6h, the tracer’s translational kinetic energy Kt and the
rotational kinetic energy Kr are studied each as a function of the

bath’s packing fraction ϕ. In both cases, we observe a much
weaker dependence on ϕ than in corresponding experiments
realized with an active bath. The momentum transferred during a
collision between the tracer and a passive bath particle is less

Fig. 5 Conventional and generalized Einstein relations for different shaker settings. Einstein relation is shown as a function of the energy injected by the
shaker E= (2πf)2A2/2, where f [Hz] and A [mm] are frequency and amplitude of the oscillation of the shaker, respectively. As indicated by the horizontal
axis, we consider three different packing fractions of the active bath: ϕ= 0 (pentagons) i.e., only the passive tracer, ϕ= 0.15 (triangles), and ϕ= 0.3
(diamonds). In each panel, colors represent the shaker frequency: f= 80Hz (red), 100 Hz (blue), 120 Hz (yellow). a–c Einstein relation for the rotational
degree of freedom, hΩ2iτΩ=Deff

r . d–f Conventional Einstein relation for the translational degree of freedom, hV2iM=ðΓrDeff
t Þ. g, h Generalized active Einstein

relation for Deff
t , given by Eq. (7). In all the panels, points reflect experimental data and black dashed lines are eye guides marking one, i.e., the validity of the

Einstein relations. In all the panels, error bars represent one standard deviation.

Fig. 6 Statics and dynamics of the tracer in a passive bath. a, b Photo and diagram of a passive bath particle (appropriately labeled with a capital “P'', for
“Passive''). c Photo of the experiment for a tracer in a passive bath at packing fraction ϕ= 0.22. The white scale bar reads 30 mm. d Trajectories of the
tracer for ϕ= 0 (blue) and ϕ= 0.22 (red). The black scale bar reads 50 mm. e Kinetic energy Kt ¼ MhV2i=2 as a function of ϕ. We also report as a black
solid line the linear scaling of Kt for a tracer in an active bath, see Fig. 4b. f Typical time τ1 of the autocorrelation of the velocity CV(t) calculated from the
profile αe�t=τ1 as a function of ϕ. g CV(t) for several values of ϕ. Here, the solid black line marks the double exponential decay observed in Fig. 4c for
ϕ= 0.15. h Rotational kinetic energy Kr ¼ JhΩ2i=2 as a function of ϕ. i Typical time of angular velocity autocorrelation CΩ(t), extracted from the profile
� e�t=τΩ as a function of ϕ. The solid black line marks the value of τΩ as a function of ϕ in the presence of the active bath, see Fig. 4I. j Einstein relation for
the rotational degree of freedom, hΩ2iτΩ=Deff

r . k Conventional Einstein relation for the translational degree of freedom, hV2iM=ðΓrDeff
t Þ. In all the panels,

points reflect experimental data and black dashed lines denote linear or constant scaling. In (e), (f), (h–k) error bars represent one standard deviation.
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energetic because the typical speed of passive particles is smaller
than the speed of their active counterparts. The speed of passive
particles is indeed determined solely by random fluctuations.

In the presence of the passive bath, the translational velocity
autocorrelation displays only a single decay regime with an
exponential shape (Fig. 6g). This result qualitatively contrasts
with that obtained in the presence of the active bath, where two
decay regimes are observed. The single decay time τ1 measured
from the velocity autocorrelation of the tracer in the passive bath
does not depend on ϕ (Fig. 6f), coincides with M/Γ, and, thus,
with the first decay regime measured in the presence of the active
bath (Fig. 4d). The single exponential behavior in the angular
velocity autocorrelation is replicated also in the presence of a
passive bath. In contrast to the experiments with the active bath,
here the typical time τΩ does not depend on ϕ (Fig. 6i) and,
thereby, τΩ ≈ J/Γr.

We conclude that the active bath is able to induce unique
properties on the dynamics of the tracer with no equilibrium
counterparts. Unlike the active bath, the passive bath is only able to
change the static properties of the tracer, such as kinetic energies
and diffusion coefficients, but cannot affect its dynamical proper-
ties, e.g., the temporal decay of autocorrelations. Consequently, the
equilibrium form of the Einstein relation is recovered for the
rotational dynamics, i.e., Eq. (6) (Fig. 6j), and for the translational
dynamics, i.e., the special case of Eq. (7) with τ2= 0 (Fig. 6k).

Discussion
In conclusion, we have provided direct experimental observation of
the full translational and rotational dynamics of a passive tracer
moving in a non-equilibrium environment consisting of circle-
shaped quasi-rigid active particles. We demonstrated, that an active
bath induces persistent correlations and memory effects via colli-
sions, that fundamentally differ from those characterizing standard
passive liquids. The tracer’s behavior cannot be fully described by
an equilibriummodel due to the emergence of additional relaxation
times. The transfer of energy and momentum due to collisions is
based on bounce-back effects and effective alignment: we account
for it through an interaction mechanism, termed tapping collisions,
that allows us to derive a generalized active Einstein relation,
linking fluctuations, dissipation, and activity.

Previous experimental studies, based on passive objects in a
bath of bacteria or eukaryotic swimmers, mainly focus on the
tracer position, reporting the enhancement of diffusivity73–76, the
spontaneuous rotations of asymmetric micro-gears36,37, or the
generalization of the energy equipartition theorem77. With these
microscopic experimental setups, only the violation of the Ein-
stein relation was experimentally investigated in a bath of
bacteria35,78. Indeed, a constructive derivation of an explicit
relation in terms of direct experimental observables could not be
easily obtained for such systems, because the short-time dynamics
cannot be resolved down to the particle level in microscopic
systems, as positions or velocities of individual bacteria or colloids
can be difficult to measure. Consequently, dynamical informa-
tion, such as translational and rotational velocity autocorrelations
could usually not be fully investigated, and therefore the transfer
of energy from the non-equilibrium bath to the tracer remained
poorly understood. In contrast, our experimental setup, based on
macroscopic vibrobots, allows us to investigate the problem in
greater detail. We have provided a particle-resolved description
for the collisions with direct measurements of the velocities of
tracer and active particles. This approach was necessary to derive
the generalized active Einstein relation and could have con-
sequences for two-dimensional swarm robotics applications9,10.

A passive tracer in a bath of active vibrobots behaves as an
underdamped active particle, whose inertia cannot be neglected.

Tapping collisions with active vibrobots are responsible for the
persistent transfer of translational and rotational momentum to
the tracer, inducing persistent motion with increasing velocity.
The active bath affects both static and dynamic properties of the
tracer, in contrast to the passive bath, which leaves the tracer’s
dynamics unchanged. The effective dynamical properties of the
tracer, such as persistence time and effective rotational friction
coefficient, are maximized by optimal values of the packing
fraction of the bath, rather than stay monotonic with it.

Our study also provides an experimental realization of a model
heuristically introduced in the framework of macroscopic active
matter with inertia, termed inertial active Ornstein-Uhlenbeck
particle (AOUP)67,68. Due to its simplicity and resulting theore-
tical possibilities, the inertial AOUP is instrumental for the
comprehension of inertial active systems providing theoretical
advances to the physics of macroscopic active matter79. Here, the
inertial AOUP model is derived by explicit coarse-graining of
bath particle dynamics and its properties are fundamental to
describe experimental data of athermal macroscopic systems
dominated by inertia.

Methods
Experimental details
Particle fabrication. Active vibrobots consist of a cylindrical core
with a diameter of 9 mm and a height of 4 mm and a cylindrical
cap ontop thereof, with a diameter of 15 mm and a height of 2
mm. This cap is supported by seven tilted cylindrical legs attached
to it, each with a diameter of 0.8 mm, and arranged in a regular
heptagon around the core, elevating the cap’s bottom face to 5
mm above the substrate, and the core’s but 1 mm. The particle’s
total height is therefore 7 mm. The seven legs are tilted to make
an angle of δ= 4∘ with the vertical. The STL file used for the
particle design is reported as Supplementary Data 1. The mass of
the active vibrobots is m= 0.83 g while the moment of inertia is
approximately Ja= 17.9 g mm2.

The passive vibrobot consists of an open cylindrical cap with
an outer diameter of 30 mm, an inner diameter of 17.2 mm, and
height of 2 mm. Seven half-ellipsoidal legs with minor radius 1.5
mm and major radius 5 mm are attached to the cap so that the
passive tracer has the same height as the active vibrobots. In
contrast to the active particles’ legs, the passive tracer’s are by
design vertical. They are much thicker, and have a rounded tip, so
as to minimize the impact of potential manufacturing imperfec-
tions. The STL file used for the particle design is reported as
Supplementary Data 2. The mass of the passive vibrobot is
M= 1.6 g while its moment of inertia is J= 232 g mm2.

All particles were manufactured from a proprietary photo-
polymer using a stereolithographic printer.

Features of the experimental setup. The motion of active and
passive vibrobots occurs on a circular acrylic baseplate with a
diameter of 300 mm and a height of 15 mm, surrounded by a
plastic perimeter wall to prevent their escape. The plate tilt is set
horizontally with respect to the ground with an accuracy of 10−2

degrees. This structure is attached to an electromagnetic shaker that
induces vibrations of the plate with a frequency of f and vibration
amplitude A= 60(2) μm to guarantee stable excitations. When not
explicitly specified, we set f= 80 Hz and A= 59(2) μm (Figs. 2, 3, 4
and 6). In contrast, in Fig. 5, f= 80 Hz, 100 Hz, 120Hz according
to the legend of the figure. The six points reported are characterized
by the values of f, A, and E listed in Table 1.

The shaker is placed on a concrete block that suppresses
resonances. In this parameter range, the vibration is uniform
across the plate60. Furthermore the applicable range of f and A
has a lower limit, since a minimum acceleration is needed to lift
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the particles off the plate and an upper limit, where particles start
to tumble and fall over. There is no noticeable indication of
resonances in the system within the explored frequency range.
Data acquisition occurs by recording images of the system
through a high-speed camera with a spatial resolution of 0.3 mm/
pixel and a time resolution of 150 frames per second.

Estimate of particle motion parameters. We track active and
passive vibrobots with sub-pixel accuracy, using standard image
processing and classical feature recognition methods. Particle
positions and orientations in all frames are obtained this way,
while translational and angular velocities are approximated by the
naive finite difference schemes V= (X(t+ Δt)−X(t))/Δt and
Ω= (Φ(t+ Δt)−Φ(t))/Δt, respectively, where Δt= 1 s/150. Due
to the finite inertia of the particles, this definition reflects the
particles’ instantaneous velocities. In contrast, only the average
displacement can be measured in the overdamped regime ren-
dering the velocity a stochastic quantity.

Parameters of passive and active particles have been deter-
mined by modeling the motion using Langevin equations for a
passive and active Brownian particle and fitted to the
measurements60. Velocity distributions and mean squared
displacements are evaluated for an initial set of parameters and
the total deviation from the measured results is calculated. This
deviation is then minimized using a Nelder-Mead optimization
scheme, iteratively improving the model parameters until an
optimum is converged upon.

Parameters of an isolated passive tracer. The translational
dynamics of a passive tracer without active bath (ϕ= 0) is
described by a two-dimensional stochastic differential equation

M _Vþ ΓtV ¼ Γt
ffiffiffiffiffiffiffi
2Dt

p
ξ ð8Þ

for velocity V ¼ _X and position X, where ξ is a white noise term
with zero average and unit variance and the coefficients Γt and Dt

are the friction and the effective translational diffusion coeffi-
cients, respectively. These parameters depend on a complex
interplay of factors, such as the intrinsic properties of the particles
(mass M, shape of the particle and, specifically, of the legs), but
also on environmental properties such as the material of the plate
where the motion takes place as well as amplitude and frequency
of the vibration. By fitting this model to the measurements, we
obtain the two free parameters of the translational dynamics
Γt= 49.7 g s−1 and Dt= 1.18 mm2 s−1.

The rotational dynamics of the passive tracer are given by an
inertial equation of motion for the angular velocity Ω ¼ _Φ where
Φ is the angle of the particle calculated with respect to the x-axis

J _Ω ¼ �ΓrΩþ Γr
ffiffiffiffiffiffiffiffi
2Dr

p
ξ; ð9Þ

where ξ is a white noise term with zero average and unit variance.
The fit yields Γr= 104 g mm2 s−1 and Dr= 0.024 s−1,

representing the rotational friction and the rotational diffusion
coefficients of the passive tracer in the absence of the bath.

Parameters of an isolated active vibrobot. The translational
dynamics of an active vibrobot is described by a two-dimensional
stochastic differential equation

m _v þ γtv ¼ γt
ffiffiffiffiffiffiffiffi
2Da

t

p
ξa þ γtv0n ð10Þ

for velocity v ¼ _x and position x, where ξa is a white noise term
with zero average and unit variance, and the coefficients γat and
Da

t are the friction and the effective translational diffusion coef-
ficients, respectively. The term γv0n is the active force providing a
velocity mode v0 to the particle and an orientation
n ¼ ðcos θ; sin θÞ, where θ is the orientational angle of the par-
ticle. The fitting method applied to the active particles allows us
to estimate γat ¼ 5:9 g s�1 and Da

t ¼ 75mm2 s�1.
The rotational dynamics of an active vibrobot are given by an

inertial equation for the angular velocity ω ¼ _θ where θ is the
non-wrapping angle of the particle calculated with respect to an
arbitrarily chosen null. The angular dynamics reads

Ja _ω ¼ �γrωþ γr
ffiffiffiffiffiffiffiffi
2Da

r

p
ξa; ð11Þ

where ξa is a white noise term with zero average and unit
variance. The coefficients γr and Da

r represent the rotational
friction and the rotational diffusion coefficient of a single active
vibrobot, respectively. The numeric fit yields γr= 200 g mm2 s−1

and Da
r ¼ 2 s�1.

For both passive and active vibrobots, we assume a Stokes
friction rather than a Coulomb friction in the dynamics for the
translational velocity (Eq. (8) and Eq. (10)). Indeed, after kicking
a vibrobot, its velocity decays exponentially rather than linearly,
as shown in a similar setup65. This originates from the vertical
bouncing motion of the particles: The vibrobots’ legs are only in
contact with the surface briefly to dissipate energy, such that the
particle bounces vertically multiple times while the relaxation
occurs.

Difference between AOUP and ABP dynamics. Inertial AOUP
and inertial ABP dynamics are characterized by equal second
moments of the velocity and activity distributions. Therefore,
kinetic temperatures, velocity autocorrelations, and mean-square
displacements coincide between the two models80,81. Differences
appear in higher moments and, in general, in the whole shape of
the distributions. Specifically, the inertial ABP is characterized by
a double-peaked velocity distribution since the active force has a
constant modulus. As a consequence, this model is suitable to
describe the dynamics of active vibrobots60. By contrast, the
inertial AOUP is characterized by a Gaussian velocity distribution
centered in the origin. Thus, it is the more suitable model to
describe the effective dynamics revealed by a passive granular
particle immersed in a non-equilibrium bath consisting of active
vibrobots, as considered here in the present manuscript.

Microscopic derivation of effective tracer dynamics. To derive a
model for the translational dynamics of the tracer we assume that
nc≪N active vibrobots particles collide with the tracer, where nc
is the number of collisions occurring on the tracer in a typical
time window, and N is the total number of bath particles in the
system. Collisions are modeled through elastic forces, such that
the dynamics of tracer and active particles will be subject to
additional forces F and fi, respectively, given by

F ¼ �k ∑
nc

i¼0
X � xi
	 


; ð12Þ

Table 1 Frequency f, amplitude A and corresponding energy
E (normalized by the total load).

f [Hz] A [μm] E [mm2 s−2]

80 59 (2) 442 (1)
100 47 (2) 431 (1)
100 40 (2) 308 (1)
120 24 (2) 157 (1)
100 32 (2) 204 (1)
120 28 (2) 220 (1)

Values for A and E are rounded off to the last significant digit.
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f i ¼ �k xi � X
	 


; ð13Þ
where k is the parameter of the interaction quantifying the col-
lision strength.

In this way, the translational dynamics of passive and active
particles are coupled and read

M _Vþ ΓtV ¼ Γt
ffiffiffiffiffiffiffi
2Dt

p
ξ þ F; ð14Þ

m _vi þ γtvi ¼ γt
ffiffiffiffiffiffiffiffi
2Da

t

p
ξa þ γtv0ni þ f i; ð15Þ

where ni ¼ ðcos θi; sin θiÞ, and θi evolves by Eq. (11). Since we are
only interested in the dynamics of the tracer, the effect of
interactions between active particles can be mapped onto an
effective swim velocity v0→ v0(ϕ) that explicitly depends on ϕ as
in previous studies82. This assumption is a good approximation,
at least, in the low-density regimes considered here, where we
expect that v0(ϕ) is only weakly dependent on ϕ. As shown in
refs. 80,83, the rotational inertia of the active particles can be
mapped onto an effective persistence time. ni is a stochastic
vector with exponential autocorrelation

hnðtÞ � nðsÞi ¼ exp � t
τ

� �
; ð16Þ

with correlation time τ given by84

τ � 1
Da
r

1þ Ja
γr
Da

r

� �
: ð17Þ

This approximation holds because our experimental system has
rotational inertia 1=Da

r � Ja
γr
. By suppressing the particle index

because the interactions have been replaced by v0(ϕ) and using
τ � 1=Da

r � m=γt, an overdamped approximate solution for x(t)
reads

xðtÞ � e�λt xðt0Þ þ
Z t

t0

ds eλsðλXðsÞ þΨðsÞÞ

2
64

3
75 ð18Þ

where λ= k/γt and Ψ is a non-Markovian stochastic vector given
by

Ψ ¼
ffiffiffiffiffiffiffiffi
2Da

t

p
ξa þ v0n: ð19Þ

We remark that this method has been previously employed by
Solon and Horowitz to study a passive tracer in an overdamped
active bath49. Considering the steady-state t0→−∞ and
x(t0)= 0, and plugging this solution into the equation for X(t),
we immediately obtain

M _Vþ ΓtVþ Γt
ffiffiffiffiffiffiffi
2Dt

p
ξ ¼ nckX þ ncke

�λt
Z t

ds eλs λxðsÞ þΨðsÞð Þ:

ð20Þ
By defining I ðtÞ ¼ k

R tds e�λðt�sÞΨðsÞ and by integrating Eq. (20)
by parts, we obtain

M _Vþ ΓtVþ Γt
ffiffiffiffiffiffiffi
2Dt

p
ξ ¼ nc I ðtÞ þ ½K � V�ðtÞð Þ; ð21Þ

where * denotes the convolution operation and the memory
kernel KðsÞ ¼ ke�λs. Equation (21) corresponds to a generalized
Langevin equation for a tracer in a bath of active particles. The
activity is contained in the non-Markovian noise IðtÞ with
steady-state autocorrelation

hI ðtÞ � I ðt0Þi ¼Da
t γtKðt � t0Þ þ v20k

λ2 � α2
e�αðt�t0Þ

þ Da
t γt þ

v20αγt
α2 � λ2

� �
e�λðt�t0Þ

� �
;

ð22Þ

where α≔ τ−1. The autocorrelation (22) takes on a particularly
simple form in the limit of large spring constant τk/γt≫ 1. This
condition holds because collisions occur on the shorter timescale
of the dynamics. In this limit, KðtÞ � γtδðtÞ, so that the tracer will
be affected by the effective friction coefficient

Γefft ¼ Γt þ ncγt � Γt; ð23Þ
where we used that nc≪ 1. Furthermore, the autocorrelation of I
reads

hI ðtÞ � I ðt0Þi � Da
t γ

2
t δðt � t0Þ þ v20γ

2
t e

�t�t0
τ

h i
; ð24Þ

where we neglected O γt=kτ
	 


.
Immediately, we can obtain the following equation of motion

for the tracer dynamics:

M _Vþ Γefft Vþ Γt

ffiffiffiffiffiffiffiffiffiffi
2Deff

t

q
ξ ¼ V0Γtη; ð25Þ

where the typical speed V0 satisfies the relation

V0Γt ¼ ncv0γt: ð26Þ
Thus, V0 depends on the packing fraction ϕ through the effective
swim velocity of the active bath v0= v0(ϕ). Finally, the effective
diffusion coefficient reads Deff

t ¼ Dt þ ncD
a
t � Dt, because nc≪

1. Together with Eq. (23), these observations allow us to recover
the coarse-grained dynamics (2) from Eq. (25).

Derivation of the active Einstein relations
Einstein relation for the translational dynamics. The translational
dynamics of the passive tracer is described by an underdamped
equation of motion (25) subject to additional red noise. This
dynamics is known in the literature of active matter as under-
damped active Ornstein-Uhlenbeck particles (AOUP) that reads

M _Vþ ΓtV ¼ Γt
ffiffiffiffiffiffiffi
2Dt

p
ξ þ ΓtV0η; ð27Þ

τ _η ¼ �ηþ
ffiffiffiffiffi
2τ

p
ζ ; ð28Þ

where ζ is a white noise term with zero average and unit variance.
The model contains two parameters for the translational
dynamics, V0 and τ= τ2, which depend on the packing fraction ϕ
through the speed of the active particles, v0→ v0(ϕ), and the
microscopic details of the system. Within our model, the dis-
tribution of the translational velocity V has a Gaussian profile
with zero average, PðVÞ / exp �MV2=ð4KtÞ

 �
fully described by

the translational kinetic energy, Kt ¼ MhV2i=2, that reads

Kt ¼ DtΓt þ V2
0

τΓt
1þ τΓt=M

: ð29Þ

This expression contains the dependence on the active bath’s
packing fraction ϕ through the effective speed V0 ≈ ncv0γt/Γt, and
τ induced by collisions. Since τΓt/M≫ 1, we can aproximate
Kt � DtΓt / MV2

0 / n2c . Previous studies on granular particles
predict that the number of collisions per unit time should scale as
nc /

ffiffiffi
ϕ

p
85 and, consequently, we find the scaling

Kt � DtΓt / ϕ ð30Þ
reported in Eq. (1), in agreement with our experimental results
(Fig. 4b).

The autocorrelation of the velocity, CV(t), of the dynamics (27)
is given by the sum of two exponentials, as seen in Fig. 4c, given
by

CV ðtÞ ¼ αe�tΓt=M þ βe�t=τ ð31Þ
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where the coefficient α and β are given by

α ¼ 2Dt
Γt
M

þ 2V2
0
Γt
M

τ

1� τ2Γ2t =M
2 ; ð32Þ

β ¼ �2V2
0
Γ2t
M2

τ2

1� τ2Γ2t =M
2 : ð33Þ

These expressions are consistent with the experimental finding
τ1=M/Γt and the order of magnitude τ2 � τ ¼ 1=Da

r .
Applying the Green-Kubo relation86, the translational diffusion

coefficient Deff
t can be calculated analytically and reads

Deff
t ¼

Z 1

0
dthVðtÞ � Vð0Þi ¼ α

M
Γt

þ βτ: ð34Þ

As expected, Deff
t is enhanced by the effective speed V0, induced

by the collisions of the active bath. By combining Eq. (34) and Eq.
(29), Deff

t can be expressed as a function of 〈V2〉, obtaining
analytically an active Einstein relation, namely Eq. (7) with τ2= τ.

Einstein relation for the rotational dynamics. The scenario
described in Fig. 3g implies that active particles are also able to
transfer rotational energy during tapping collisions. This occurs
when active bath particles slide around the tracer (tangential
collisions) and is consistent with the occurrence of effective
alignment interactions. As a crude approximation, we can
assume that such a mechanism produces a torque proportional
to Ω that accelerates the rotation. With this idea, the rotational
velocity of the tracer evolves through effective underdamped
dynamics

J _Ω ¼ �ΩΓeffr þ Γeffr

ffiffiffiffiffiffiffiffiffiffi
2Deff

r

q
η; ð35Þ

with Γeffr <Γr. The effective torque due to tangential collisions
induces an effective decrease in the rotational friction coeffi-
cient of the tracer.

This model predicts the steady-state properties of Ω that agree
with experimental findings shown in Fig. 4: The distribution P(Ω)
has a Gaussian-like profile with zero average,
PðΩÞ / exp �JΩ2=ð2KrÞ

 �
, fully determined by the rotational

kinetic energy Kr that reads

Kr ¼ JhΩ2i ¼ Γeffr Deff
r ; ð36Þ

where both Deff
r and Γeffr depend on ϕ. In addition, the

autocorrelation of the angular velocity is given by a single
exponential

CΩðtÞ ¼ hΩ2ie�tΓeffr =J ð37Þ
so that we can identify τΩ ¼ J=Γeffr . Since the ratio hΩ2i=τΩ ¼
Deff
r ðΓeffr Þ2=J2 does not depend on ϕ, as shown in Fig. 4j, we can

conclude that the effective rotational diffusion coefficient scales as

Deff
r / Γeffr

	 
�2
.

Applying the Green-Kubo relation86, we can calculate analyti-
cally the effective rotational diffusion coefficient Deff

r by integrating
CΩ(t) over time. By expressingDeff

r as a function of 〈Ω2〉, we obtain
the Einstein relation for the rotational dynamics (Eq. (6)),

Deff
r ¼

Z 1

0
dthΩðtÞΩð0Þi ¼ hΩ2iτΩ; ð38Þ

which was experimentally verified as seen in Fig. 4n.

Data availability
The data that support the plots within this paper and other findings of this study are available
from the corresponding author upon request, while Supplementary Movie 1, Supplementary
Movie 2 and Supplementary Movie 3 are uploaded as Supplemental Material.

Code availability
STL files for the design of the active and passive vibrobots is included as Supplementary
Data 1 and Supplementary Data 2.
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