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ABSTRACT
Liquid crystals consisting of biaxial particles can exhibit a much richer phase behavior than their uniaxial counterparts. Usually, one has to
rely on simulation results to understand the phase diagram of these systems since very few analytical results exist. In this work, we apply
fundamental measure theory, which allows us to derive free energy functionals for hard particles from first principles and with high accuracy,
to systems of hard cylinders, cones, and spherotriangles. We provide a general recipe for incorporating biaxial liquid crystal order parameters
into fundamental measure theory and use this framework to obtain the phase boundaries for the emergence of orientational order in the
considered systems. Our results provide insights into the phase behavior of biaxial nematic liquid crystals and, in particular, into methods for
their analytical investigation.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0188117

I. INTRODUCTION

The rich collective behavior that results from anisotropic inter-
actions between particles has fascinated liquid crystal researchers
for decades.1 Even in spatially homogeneous systems, the particle’s
orientations can be uncorrelated (isotropic phase) or correlated
(ordered phases). A typical example for an orientationally ordered
phase is the nematic phase, in which the main symmetry axis of
the particles is aligned. Over the years, more and more phases
with nontrivial ordering behavior have been identified.2,3 Prominent
examples that have attracted interest in recent years are ferroelec-
tric nematics (global polar order in which additional top-down
symmetry is broken)4,5 and biaxial nematics (two main axes of pre-
ferred orientation).6–8 Beyond these homogeneous ordered phases,
many systems can also exhibit additional positional order, form-
ing inhomogeneous liquid crystal phases, such as columnars and
smectics.

Liquid crystalline order has also been observed in colloidal
systems,9,10 whose constituting particles can be synthesized nowa-
days with nearly any desired shape.11,12 The entropic nature of the
interactions governing these systems allows for a reliable theoreti-
cal modeling in terms of pure hard-core interactions.13 Therefore,

the ordering behavior of various hard-body systems is well studied,
in particular, for apolar uniaxial shapes, such as rods or disks.14–19

Moreover, while shape polarity is typically not sufficient to stabi-
lize polar order in a homogeneous phase of purely hard particles, it
can result in a rich behavior, including polar domains at higher den-
sities20 or even periodic gyroidal structures for particular pear-like
shapes.21,22 Arguably, biaxial shapes give rise to an even more com-
plex phase behavior due to their lower symmetry. Even in two spatial
dimensions, ordering phenomena related to two distinct particle
axes reach from interlocked layers23 to the emergence of nontrivial
orientational symmetries.24,25 In three spatial dimensions, the biaxial
ordering of board-like particles (cuboids or spheroplatelets) is well
studied.26–33 These shapes are the common choice for investigat-
ing biaxiality due to their particular symmetry and their realization
in colloidal experiments.34 However, quantitative theoretical results
remain scarce.

The phase behavior of systems with complex particle shapes
is typically investigated using computer simulations. For gaining a
deeper understanding of the phase diagram of complex liquid crys-
tals and for reducing the computational effort, it is advantageous to
have available an analytic theory, which also represents the actual
geometric interactions between the particles. The best candidate
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for such a theoretical description is fundamental measure theory
(FMT),35–37 which allows us to obtain quantitatively accurate free
energy functionals for hard particle systems from first principles.
Following its generalization from hard spheres to general convex
hard particles,38,39 it has been successfully refined40–44 and applied to
study the bulk phase behavior and various inhomogeneous systems
of (mostly) uniaxial rod-like particles.40,41,43–48 For hard sphero-
cylinders, in particular, FMT has been tested in detail and proven
very reliable for a large range of problems.43 A prominent example
for polar particles investigated by FMT are those of pear-like shape.48

Although triangular prisms have also been studied using FMT,44

they were implicitly assumed as uniaxial and only shapes were con-
sidered at which no biaxial order was found in simulations. In turn, a
particular version of FMT for parallel hard parallelepipeds was used
to treat biaxiality under the assumption of restricted orientations.29

The general strength of FMT is the possibility to gain analytic
insights into the phase transitions between ordered phases because
it directly connects anisotropic shape information to the particle
orientation. Analytic theories describing orientational ordering phe-
nomena often rely on the use of orientational order parameters,
which measure the degree of orientational order in a system. The
most widely used one is the nematic order parameter measuring
alignment of rod-like particles. In systems of particles with com-
plex shapes, different types of orientational order are possible such
that it is useful to employ a set of several order parameters49,50 that
measures orientational order with respect to different particle axes.
While it is well understood by now how the free energy for a homo-
geneous fluid of uniaxial particles can be expressed as a function of
the average number density and the nematic order parameter,39,40,51

the free energy—and, consequently, the phase behavior—of biaxial
particles as a function of appropriate orientational order parameters
remains to be investigated. In particular, it is not known how these
order parameters can be incorporated into FMT.

In this work, we apply FMT to hard particles with uniax-
ial, polar, and biaxial shapes, specifically to cylinders, cones, and
spherotriangles, as illustrated in Fig. 1, taking into account all ori-
entational degrees of freedom. We demonstrate how shape polarity
affects the isotropic–nematic phase boundary by comparing a polar
hard cone to an apolar hard cylinder and provide detailed phase
diagrams for the homogeneous phases of hard isosceles spherotrian-
gles, also resolving the transitions between different uniaxial nematic

FIG. 1. Parameterizations of the hard uniaxial and biaxial bodies considered in
this work. Uniaxial cylinders (left) and cones (middle) are characterized by their
(base) diameter D and height H, which determine their common aspect ratio
l = H/D. The mantle length L of a cylinder (L = H) differs from that of a cone

(L =
√

H2
+ D2
/4). Biaxial isosceles spherotriangles (right) of diameter D are

the parallel sets at distance D/2 of flat isosceles triangles with base length A and
side lengths B (i.e., particles comprised of all points with distance equal or less than
D/2 to a flat isosceles triangle). We define their aspect ratio l = (A + 2B)/(2D),
their shape ratio x = A/(2B), and their opening angle 2γ such that x = sin γ.

phases and a biaxial phase. In doing so, we also provide in Sec. II a
generally applicable recipe for how to incorporate a certain set of rel-
evant order parameters into FMT. This general theory allows us to
overcome the need to use different assumptions to describe differ-
ent phase transitions, while still providing analytic insights. These
results are discussed in Sec. III.

II. THEORY OF ORIENTATIONAL ORDER
A. Order parameters
1. Uniaxial and biaxial particles

The orientation of a hard particle in three spatial dimensions
can, in general, be specified using a set of three angles θ ∈ [0,π],
ϕ ∈ [0, 2π], and ψ ∈ [0, 2π], known as the Euler angles.52 Here, the
angles θ and ϕ are the angles of spherical polar coordinates deter-
mining the orientation of a particle’s main axis, and the third angle
ψ then specifies how the particle has to be rotated around this axis in
order to get into a certain position. If the particle has an axis of con-
tinuous rotational symmetry—a typical example for this would be a
rod—the axis whose orientation is specified by θ and ϕ can be con-
veniently chosen to be the symmetry axis. In this case, the angle ψ
has no physical relevance and can be ignored such that the particle’s
orientation is fully specified by only two angles. Such a particle is
referred to as an uniaxial particle; a particle without such a symmetry
is a biaxial particle.

2. Orientational ordering tensors
Whether or not a system of particles is in an ordered phase

can be measured using orientational order parameters. These can
be systematically defined by expanding the orientational distribu-
tion function into Cartesian tensors.50,53,54 At second order and for
uniaxial particles, this expansion gives rise to the nematic tensor Qij,
which is a symmetric traceless tensor. The eigenvalue S of Qij with
the largest absolute value measures the degree of nematic order; the
corresponding eigenvector is the nematic director n⃗.55 If the two
other eigenvalues are equal to −S/2, the system is in an uniaxial
(nematic) phase. On the other hand, if the system has three distinct
eigenvalues, it is in a biaxial phase.8

The distinction between uniaxial and biaxial can thus be made
both regarding the particle shapes and regarding the ordered phases.
Biaxial particles can also form a uniaxial phase. In principle, uniax-
ial particles can also form a biaxial phase (if their axes are ordered in
such a way that their nematic tensor has three distinct eigenvalues).
However, in the absence of additional external influences, phase
biaxiality, in practice, typically only arises from particle biaxiality.

Which order parameters are appropriate, and which ordered
phases the system can exhibit, depends on the symmetries of the par-
ticles. For example, in a system of square cuboids where the edges
have different lengths, one can distinguish a phase in which edges
of the same length tend to be parallel from a phase in which edges
of the same length are either parallel or orthogonal to each other.
For cubes, where all edges have the same length, this distinction
would not be meaningful since these phases would be physically
indistinguishable.

This implies that systems of particles whose shape is more com-
plex than that of rods (the most widely studied particle type in
liquid crystal physics) can exhibit a much richer phase behavior and
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require more sophisticated order parameters.49,50 These can also be
defined in terms of a systematic expansion of the distribution func-
tion in Wigner matrices or (equivalently) Cartesian tensors. Among
experimentalists, the Saupe ordering matrix8,56

Sαβi j =
1
2
⟨3 (m⃗i ⋅ l⃗ α)(m⃗j ⋅ l⃗ β) − δijδαβ⟩ (1)

with the orientational average ⟨⋅⟩ is particularly popular. Here, the
orthonormal sets {m⃗i}, i = 1, 2, 3, and {l⃗ α}, α = 1, 2, 3, constitute a
basis fixed in the lab frame and the molecular frame, respectively.
The reason one needs a 3 × 3 × 3 × 3 matrix (namely Sαβi j ) in the case
of biaxial particles rather than a 3 × 3 matrix (namely Qij) for uniax-
ial particle is that, in the biaxial case, the specification of the particle
orientation requires two orthogonal orientation vectors, with the
Euler angle ψ specifying the second one. The matrix Sαβi j roughly
corresponds to the second order in the Cartesian expansion of a dis-
tribution function depending on all three Euler angles; see Ref. 57
for more details.

3. Orientational order parameters
For a particle shape that belongs to the D2h symmetry group

(i.e., with the same symmetry as a cuboid), one can show49 that the
Saupe ordering matrix has only four independent elements. In this
case, it is convenient to work not directly with elements of the Saupe
ordering matrix, but with the order parameters,

S = 3
2
⟨(m⃗ 3 ⋅ l⃗ 3)2 − 1

3
⟩,

U =
√

3
2
⟨(m⃗ 1 ⋅ l⃗ 3)2 − (m⃗ 2 ⋅ l⃗ 3)2⟩,

P =
√

3
2
⟨(m⃗ 3 ⋅ l⃗ 1)2 − (m⃗ 3 ⋅ l⃗ 2)2⟩,

F = 1
2
⟨(m⃗ 1 ⋅ l⃗ 1)2 − (m⃗ 1 ⋅ l⃗ 2)2 − (m⃗ 2 ⋅ l⃗ 1)2 + (m⃗ 2 ⋅ l⃗ 2)2⟩,

(2)

which can be expressed as linear combinations of the four indepen-
dent matrix elements. The physical meaning of these parameters is
as follows:

● S, the uniaxial nematic order parameter, measures whether
the axis m⃗3 of the molecules is aligned with the lab axis l⃗ 3. If
m⃗3 is the symmetry axis of a rod and l⃗ 3 is chosen to align
with the uniaxial nematic director n⃗, then S is simply the
standard nematic order parameter.

● U, the molecular biaxiality order parameter, measures
whether there is molecular biaxiality in a uniaxial phase. If
there is a physical difference between the molecular axes m⃗1
and m⃗2, then it is likely that, on average, there is a difference
regarding their probability of being aligned with l⃗ 3.

● P, the phase biaxiality order parameter, measures whether
the axis m⃗3 is aligned preferably with l⃗ 1 or l⃗ 2. In a perfect
uniaxial nematic phase, m⃗3 would always be aligned with l⃗ 3.
If there are deviations from this alignment, they can either
be random (P = 0) or have a preferred direction. In this sce-
nario (biaxial nematic), there are two preferred axes rather
than one. Note that P can be nonzero even if the particles

are uniaxial since it only depends on m⃗3 (whether that will
happen in an actual physical system is another matter).

● F, the full biaxiality order parameter, measures whether
there is orientational ordering with respect to the axes m⃗1
and m⃗2. A system with nonzero F is fully biaxial in the sense
that both particle shape and phase are biaxial.49 If, for exam-
ple, m⃗1 is perfectly aligned with l⃗ 1 and m⃗2 with l⃗ 2 (which,
since l⃗ 1 and l⃗ 2 can be chosen according to the preferred par-
ticle orientations, essentially just means that the vectors m⃗1
of all particles are aligned), then F is maximal. On the other
hand, if m⃗1 has equal probability of being aligned with l⃗ 1 and
l⃗ 2 (uniform distribution of m⃗1), then F vanishes.

Moreover, we will demonstrate in this work that the order para-
meters S, U, P, and F can be used not only for particles with D2h
symmetry but even for certain polar particles. Cone-like particles,
for example, are polar (a mirror reflection at the base changes their
physical state). However, while they may exhibit local polar order in
spatially inhomogeneous configurations, they do not form spatially
homogeneous polar phases.20 Since our focus lies on orientational
order in spatially homogeneous phases here, we can, despite the fact
that we consider particles with polar symmetries, restrict ourselves
to the parameters S, U, P, and F.

4. Choice of coordinate systems
The description of a certain physical state of a system in terms

of S, U, P, and F is not unique, but it depends on the alignment of
both the lab and the body frame, as we will elaborate below and illus-
trate in Fig. 2. In choosing these coordinate frames, we aim to follow
the convention that S represents the standard nematic order para-
meter (the implication of alternative conventions is exemplified in
Sec. II C 3).

To fix the coordinate system of the lab frame specified by l⃗ 1, l⃗ 2,
and l⃗ 3, we must indicate the direction of the uniaxial director n⃗. For
example, perfect uniaxial order only corresponds to the case S = 1
and P = 0 if we choose l⃗ 3 to align with n⃗. Suppose that we instead
choose l⃗ 2 to be aligned with n⃗. Then, we would—even though the
system looks exactly the same—have S = −1/2 and P =

√
3/2 instead

of S = 1 and P = 0. To avoid this problem and to ensure that the
order parameters have a clear physical interpretation that coincides
with the usual one in the uniaxial limit, we always choose the lab
frame to be aligned with the director frame, i.e., l⃗ 3 ∥ n⃗. It will be
shown that in this case the parameter P is irrelevant for describing
phase transitions in homogeneous bulk systems. The parameter U,
despite being relevant for characterizing the orientational distribu-
tion, will turn out not to play a major role for the phase behavior.
This leaves us with the two central order parameters S and F, which
we use to map out our phase diagrams, where S measures nematic
order in the standard way and a nonzero F then shows that biaxial
order is present.

The coordinate system needs to be fixed not only for the lab
frame but also for the body frame, specified by m⃗1, m⃗2, and m⃗3. For
uniaxial particles, the symmetry axis must be chosen to be parallel to
m⃗3 irrespective of their shape. Otherwise, one would treat the par-
ticle as if it was biaxial since S would not measure the alignment of
the symmetry axis to the director and U or F may not vanish. This
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FIG. 2. Relation between the body frame (m⃗1, m⃗2, m⃗3) and the lab frame (l⃗ 1, l⃗ 2, l⃗ 3). (a) Expected alignment of the uniaxial nematic director n⃗ (specified in the lab frame
such that l⃗ 3 ∥ n⃗) for different shape ratios x of a spherotriangle, compare Fig. 1, as indicated by the bottom arrow. For small or large x, the body has a prolate shape and we
expect the height or the base to align with n⃗, respectively. For oblate shapes at intermediate x, we expect n⃗ to be perpendicular to the face of the spherotriangle. In each case,
the blue coordinates indicate the body frame chosen such that the main particle axis is parallel to m⃗3, while the red coordinates indicate the body frame chosen such that
m⃗3 always specifies the direction of the height. Both conventions result in a different interpretation of the order parameters, which can be identified according to substitutions
in Eqs. (3) and (4), as indicated by the double arrows with corresponding permutation operators τ1/2 annotated. Further details are given in the text and Ref. 49. In these
transformations, the sign of m⃗i is irrelevant for the set of order parameters considered here. (b) Illustration of the three Euler angles, transforming the body frame (blue) to the
lab frame (black) via the rotation matrix R̂ from Eq. (5): (i) both coordinate frames are initially aligned, in particular l⃗ 3 = m⃗3, which is assumed for a proper interpretation of
the order parameters defined in Sec. II A 3; (ii) a rotation by ψ around l⃗ 3 specifies the orientation perpendicular to the body’s main axis (irrelevant for uniaxial particles); (iii)
a rotation by θ around l⃗ 2 specifies the polar orientation of the body’s main axis; and (iv) a rotation by ϕ around l⃗ 3 specifies the azimuthal orientation of the body’s main axis.

choice of the main axis is, however, not as obvious for biaxial par-
ticles. Take, as an example, an isosceles spherotriangle (made of a
triangle with two sides of equal length). If the base of such a tri-
angle (the side whose length is different) is much longer than the
other two sides, the particles are expected to exhibit nematic order
with the director pointing along the base of the triangles. If, on the
other hand, the base is sufficiently short, the particles exhibit nematic
order with the director pointing in a direction being orthogonal to
the base.

Specifically, in this work, we will consider the three different
uniaxial nematic phases, which we distinguish by their director ori-
entations assumed for a certain typical particle shape, as depicted in
Fig. 2 for three representative cases: (i) a prolate nematic, Nph, in
which the triangles align to the director with their height (when it
is much larger than the base length); (ii) an oblate nematic, No, in
which the triangles align to the director perpendicular to their face
(when height and base are of comparable length such that the parti-
cle has an oblate shape); and (iii) a prolate nematic, Npb, in which the
triangles align to the director with their base (when it is much larger
than their height). We thereby use the words “prolate” and “oblate”
for both phases and, as one usually does, for particle shapes. Note
that, similar to the notion of “uniaxial” and “biaxial,” prolate/oblate
particle shapes and the emergence of prolate/oblate nematic phases
are closely related. This leaves us with two options for choosing the
direction m⃗3 (which we identify with the z axis) in the body frame.
First, we can choose it parallel to the axis along which the parti-
cles presumably align in the case of uniaxial nematic order, which
depends on the relative lengths of the different sides of the parti-
cle (black coordinate systems drawn in Fig. 2). This option allows
us to follow the convention described above to disregard the order

parameter P for each presumed director orientation and is employed
in this work. Second, we can choose to always align m⃗3 with, say
the height of the triangle (red coordinate systems drawn in Fig. 2).
This option is more general as there is no need to input assumptions
a priori, which may impose a bias toward certain director orienta-
tions, but it requires to take into account all four order parameters
S, U, P, and F without a clear interpretation.

Finally, we note that there exists a well-defined relation between
the order parameters obtained from different choices of unit vectors
in the body frame, which we summarize below. Suppose we chose
the second option and align the triangle height with the vector m⃗3
of the body frame. If we then want to investigate uniaxial nematic
order along the triangle height, Nph, the first option (aligning the
particular axis of interest) is trivially equivalent, as indicated in the
first panel of Fig. 2. For uniaxial nematic order along the triangle
faces, No, choosing the first option would amount to exchanging the
two vectors m⃗2 and m⃗3, which defines the action of the permutation
operator τ1 on the basis of the body frame, as indicated in the second
panel of Fig. 2. As detailed in Ref. 49, this procedure allows us to
obtain the appropriate order parameters by taking the result of the
second option and making the substitutions

S
τ1Ð→ − 1

2
S −
√

3
2

U, U
τ1Ð→ −

√
3

2
S + 1

2
U,

P
τ1Ð→ − 1

2
P −
√

3
2

F, F
τ1Ð→ −

√
3

2
P + 1

2
F.

(3)

The same can be done for uniaxial nematic order along the triangle
base, Npb, where m⃗1 and m⃗3 are exchanged by τ2, as indicated in the
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third panel of Fig. 2. The appropriate substitutions are then found
to be

S
τ2Ð→ − 1

2
S +
√

3
2

U, U
τ2Ð→
√

3
2

S + 1
2

U,

P
τ2Ð→ − 1

2
P +
√

3
2

F, F
τ2Ð→
√

3
2

P + 1
2

F.
(4)

An alternative point of view on these substitutions is discussed in
Sec. II C 3 for a scenario with perfect uniaxial order.

5. Representation in terms of Euler angles
The definitions of the order parameters (2) are relatively gen-

eral and require, for practical calculations, a specification of the
average ⟨⋅⟩ that is used. We assume that the system can be character-
ized by a distribution g(ϕ, θ,ψ) that gives the probability of finding
a particle with an orientation specified by the Euler angles ϕ, θ, and
ψ, which connect the body frame to the lab frame. Here, we fol-
low the convention of Ref. 49 and use the y-notation. As illustrated
in Fig. 2(b), the body frame is first rotated by the angle ψ ∈ [0, 2π]
around l⃗ 3 (which coincides by default with its z axis, i.e., m⃗3). This is
an identity map for uniaxial bodies. It is followed by a second rota-
tion by the angle θ ∈ [0,π] around l⃗ 2 and a third one by the angle
ϕ ∈ [0, 2π] around l⃗ 3. These latter two rotations map the z axis of
the body frame onto the unit sphere.

Any vector can be transferred from the body frame to the lab
frame via the rotation matrix

R̂ ∶= R̂3(ϕ) ⋅ R̂2(θ) ⋅ R̂3(ψ) (5)

accounting for all three Euler angles. Following the convention of
using extrinsic rotations, R̂α(γ) is the rotation matrix describing a
clockwise rotation by the angle γ around the axis of the αth unit
vector l⃗ α of the lab frame. Explicitly, the components of R̂ read

R̂11 = cos (ϕ) cos (θ) cos (ψ) − sin (ϕ) sin (ψ),
R̂12 = − cos (ψ) sin (θ) − cos (ϕ) cos (θ) sin (ψ),

R̂13 = cos (ϕ) sin (θ),
R̂21 = cos (ϕ) sin (ψ) + cos (θ) cos (ψ) sin (ϕ),
R̂22 = cos (ϕ) cos (ψ) − cos (θ) sin (ϕ) sin (ψ),

R̂23 = sin (ϕ) sin (θ),
R̂31 = − cos (ψ) sin (θ),
R̂32 = sin (θ) sin (ψ),

R̂33 = cos (θ),

(6)

and these can be conveniently expressed in terms of the basis vectors
of the director and body frame as

R̂αi = m⃗i ⋅ l⃗ α, (7)

which allows us to make contact to the order parameters, as defined
in Eq. (2).

In terms of the Euler angles (ϕ, θ,ψ) and an appropriate ori-
entational distribution g(ϕ, θ,ψ), we can rewrite the four order
parameters S, U, P, and F as

X = ∫ dO g(ϕ, θ,ψ) fX(ϕ, θ,ψ), X ∈ {S, U, P, F}, (8)

where the angular integral reads

∫ dO ∶= 1
8π2∫

2π

0
dϕ∫

π

0
dθ sin (θ)∫

2π

0
dψ (9)

and the functions

fS(ϕ, θ,ψ) = 1
2
(3 cos2(θ) − 1), (10)

fU(ϕ, θ,ψ) =
√

3
2

sin2(θ) cos (2ψ), (11)

fP(ϕ, θ,ψ) =
√

3
2

sin2(θ) cos (2ϕ), (12)

fF(ϕ, θ,ψ) = 1
2
(1 + cos2(θ)) cos (2ϕ) cos (2ψ)

− cos (θ) sin (2ϕ) sin (2ψ) (13)

are specified by inserting the relation from Eq. (7) and the explicit
expressions from Eq. (6) into Eq. (2). In this explicit representation
of the order parameters, the choice of coordinate systems discussed
in Sec. II A 4 becomes more intuitive. The only relevant angle for
the uniaxial nematic order parameter (10) is θ. For θ = 0, i.e., in the
case of perfect uniaxial order, m⃗3 equals l⃗ 3 (as illustrated in Fig. 2).
Hence, the particle axis chosen to align with m⃗3 in the body frame
sets the uniaxial director, i.e., the maximum of g at θ = 0.

B. Fundamental measure theory (FMT)
1. Density functional theory (DFT)

Based on the celebrated Hohenberg–Kohn theorem58 originally
developed for quantum-mechanical systems, classical density func-
tional theory (DFT)59 states that there exists a unique functional
Ω[ρ] of the classical number density ρ, which gets minimal in equi-
librium, i.e., when inserting the equilibrium density ρ = ρ0. Then, the
value of the functional equals the grand potential of the system, Ω
= Ω[ρ0]. For systems of anisotropic particles as considered here, the
density ρ(r, O) depends, in general, on both positions r and orien-
tations O. Thus, to determine the equilibrium configuration of such
a system from a given functional Ω[ρ], one has to perform a basic
minimization by solving the Euler–Lagrange equation,

δΩ[ρ]
δρ(r, O) ∣ρ=ρ0

= 0. (14)

The general form of the density functional is

βΩ[ρ] = ∫ dr(Φid(r) +Φex(r))

+ ∫ dr∫ dO ρ(r, O)(βVext(r, O) − βμ), (15)
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where Vext(r, O) is an external potential acting on the particles, μ
is their chemical potential, and β is the inverse temperature. The
free energy density of the system is split into the exactly known
contribution

Φid(r) = ∫ dO ρ(r, O)(ln (λ3 ρ(r, O)) − 1) (16)

of an anisotropic ideal gas with the (irrelevant) thermal volume λ3

(comprising trivial integrals over momenta and angular momenta)
and the excess free energy density Φex(r), which describes the
interactions in the system and is not known in general.

2. Excess free energy for hard bodies
For convex hard bodies, a sophisticated expression for Φex(r)

exists that is based on the seminal work of Rosenfeld, who found an
elegant way to decompose the interaction of hard spheres in 1989.35

His FMT functional has been further refined in later work36,37,60,61

and eventually generalized to more general shapes, which can
assemble in orientationally ordered phases.38,41–43

In the framework of FMT, the hard-body interaction can be
conveniently expressed in terms of a set (labeled by the index ν) of
weight functions ω(ν)(r, O). These are local geometrical measures of
a hard body B with surface ∂B. These functions represent an inter-
acting particle and thus both depend on its position in space and its
orientation, as we will specify in Sec. II B 3. This allows us to shift the
functional dependence on the density from the excess free energy to
a set of weighted densities

nν(r) = ∫ dr∫ dO ρ(r′, O)ω(ν)(r − r′, O), (17)

which are defined as an orientationally averaged convolution of the
density and the weight functions.

The key feature of FMT is that we can write the excess free
energy density in the general form

Φex = −n0 ln (1 − n3) +
ϕ2

(1 − n3)
+ ϕ3

(1 − n3)2 (18)

solely as a function of weighted densities (17). Here, we use the
truncated expansion

ϕ2 = n1n2 −Ð→n 1 ⋅Ð→n 2 − ζ Tr[←→n 1
←→n 2] (19)

involving vectorial and tensorial weighted densities of rank two, the
correction factor ζ = 5/4, and the Tarazona–Rosenfeld62 version of
the term

ϕ3 =
3

16π
(n3

2 − 3n2Tr[←→n 2
2] + 2Tr[←→n 3

2]). (20)

Note that a proper choice of the terms ϕ2 and ϕ3 is particularly
important for anisotropic particles since the standard version of ϕ3
for hard spheres, as proposed by Tarazona,60 leads to qualitatively
and quantitatively poor results in the anisotropic case40 [while all
versions of Eq. (18) reduce to an appropriate functional for hard
spheres if the according weighted densities are used]. On the other
hand, more sophisticated choices of both terms are available in terms
of more complicated geometrical two- and three-body measures and
their appropriate expansions into rotational invariants (in the case

of uniaxial particles).48 We choose to work here with the functional
based on Eqs. (19) and (20) for the following reasons: It has been
demonstrated in detail for hard spherocylinders that the chosen
approximation of ϕ2 in terms of rank-two tensors does not result in
a major offset when locating the isotropic–nematic transition (while
it slightly underestimates the difference of coexistence densities).
Most notably, we will demonstrate below that only using rank-two
tensors allows us to make direct contact to the general order para-
meters introduced in Sec. II A, which is one of the main goals of
the present work. In doing so, we will gain direct analytic insights
for spatially homogeneous systems instead of having to perform a
tedious numerical integration, which would be required for other
versions of Φex.

3. Homogeneous weighted densities
In what follows, we are particularly interested in the bulk phase

behavior. Thus, we set Vext(r, O) = 0 in Eq. (15) and focus on spa-
tially homogeneous (but orientationally ordered) phases. Hence,
we express the orientation-dependent density ρ(O) = ρ g(ϕ, θ,ψ) in
terms of the homogeneous bulk density ρ and the normalized ori-
entational distribution function g(ϕ, θ,ψ) entering in Eq. (8). With
this definition, the free energy density of the ideal gas (16) simplifies
to

Φid = ρ(ln (λ3ρ) − 1 + ∫ dO g(ϕ, θ,ψ) ln g(ϕ, θ,ψ)) (21)

and the convolution in Eq. (17) turns into an ordinary integral over
space. It is thus possible to write all required weighted densities
in an instructive form, which directly incorporates the appropriate
orientation dependence of the corresponding weight functions.

The four scalar weighted densities

n3 = ρ∫
B

dr = ρ v = η,

n2 = ρ∫
∂ B

dr,

n1 = ρ∫
∂ B

dr
H(r)

4π
,

n0 = ρ∫
∂ B

dr
K(r)

4π
= ρ

(22)

do not depend on the orientational distribution and represent the
particle volume v, its surface area, the surface average of the local
mean curvature H(r), and the surface average of the local Gaus-
sian curvature K(r), respectively. The latter is equal to one for any
(simply connected) hard body. Moreover, we have defined the pack-
ing fraction η obtained for n3 as the product of the density and the
particle volume. The two vector densities

Ð→n 2 = ρ∫
∂ B

dr ∫ dO g(ϕ, θ,ψ) n,

Ð→n 1 = ρ∫
∂ B

dr ∫ dO g(ϕ, θ,ψ) H(r)
4π

n
(23)
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represent averages of the surface unit normal vector n(r, O). Finally,
the tensor densities

←→n 2 = ρ∫
∂ B

dr ∫ dO g(ϕ, θ,ψ) nnT ,

←→n 1 = ρ∫
∂ B

dr ∫ dO g(ϕ, θ,ψ)

× κ1(r) − κ2(r)
8π

(v1vT
1 − v2vT

2 )

(24)

are quadratic in the vectors characterizing the particle surface (nnT

denotes a tensor product). Here, κi(r) denote the local principal cur-
vatures of the surface in the direction of the unit vectors vi(r, O),
i = 1, 2.

Note that the vectorial and tensorial weighted densities repre-
sent orientational averages and are therefore crucial for describing
orientationally ordered phases. While the former will always vanish
for apolar particle shapes and average to zero for the nematic phases
of interest here, the latter will allow us to identify appropriate order
parameters for uniaxial and biaxial order. To show this, we provide
below a detailed recipe for how to calculate the weighted densities.

4. Explicit calculation of weighted densities:
Orientational order in FMT

To explicitly calculate the weighted densities in Eqs. (22)–(24),
the position dependence in the integrands is to be understood in
the sense that r is a coordinate in the body frame and the orien-
tation dependence of vectors and tensors stems from the relation
between the body and the lab frames. While the volume measure n3
always equals the packing fraction, the surface measures (involving
positional integrals over ∂B) can be calculated by a six-step proce-
dure explained in the following. Additional information is provided
in Appendix A. To calculate the scalar measures, it is sufficient to
follow steps two, three, and five, as they do not require an explicit
orientational averaging.

The first step is to identify (in the case of uniaxial particles) or
choose (in the case of biaxial particles, where this selection may be
ambiguous; see Sec. II A 4) the primary uniaxial nematic axis for a
given particle geometry and ensure that it points in the z-direction
of the body frame (i.e., the basis vector m⃗3). The second step is to
parameterize the surface ∂B in the body frame using two appro-
priate parameters. Due to the additivity of the weight functions,
different parts of the surface can be treated independently. Specifi-
cally, for the bodies of interest depicted in Fig. 1, we need to consider
the following two-dimensional manifolds: a cone mantle, disks, por-
tions of a torus (in the limit of circular rings), portions of a sphere,
(parts of) cylinder mantles, and flat triangles. The corresponding
parameterizations are summarized in Appendix A 1. The third step
is to calculate all geometrical measures on the surface of each body
part using the chosen parameterization in the body frame. This is
exemplified for the cone mantle in Appendix A 2. The fourth step is
to transfer the surface vectors to the lab frame via the rotation matrix
R̂, defined in Eq. (5). To do so, we calculate xi(r, O) = R̂i j x̄ j(r),
where xi represents the desired ith component of n, v1, or v2 with full
orientation dependence in the lab frame and x̄ j is the jth component
of these vectors in the body frame, and we have implied summation
over the repeated index j.

The fifth step is to integrate over the surface of all body parts
using the parameterization in Appendix A 1. The sixth and final step

is to perform the orientational average and thereby specify how we
can explicitly identify the appropriate order parameters in our den-
sity functional. This can be conveniently achieved by recognizing
relation (7) between the components of R̂ and the basis vectors of
the two coordinate frames. In general, the calculation of a tensorial
weighted density of rank k (with k = 0 for scalars and k = 1 for vec-
tors) will involve k factors of these components. For our purpose, we
find after some algebra that the average of the squared components
can be directly related to the order parameters defined in Eq. (2) such
that we can set

⟨(R̂ 11)2⟩ = S −
√

P −
√

U + 3F
6

+ 1
3

,

⟨(R̂ 12)2⟩ = S −
√

P +
√

U + 3F
6

+ 1
3

,

⟨(R̂ 13)2⟩ = −S +
√

P
3

+ 1
3

,

⟨(R̂ 21)2⟩ = S +
√

P +
√

U − 3F
6

+ 1
3

,

⟨(R̂ 22)2⟩ = S +
√

P +
√

U + 3F
6

+ 1
3

,

⟨(R̂ 23)2⟩ = −S −
√

P
3

+ 1
3

,

⟨(R̂ 31)2⟩ = −S +
√

U
3

+ 1
3

,

⟨(R̂ 32)2⟩ = S +
√

U
3

+ 1
3

,

⟨(R̂ 33)2⟩ = 2
3

S + 1
3

,

(25)

while all linear and mixed terms must vanish if no other order
parameters do contribute.

The weighted densities calculated from the procedure out-
lined above are collected in Appendix B for the bodies depicted in
Fig. 1. As expected, the tensorial weighted densities of hard cones
and hard cylinders (see Appendices B 1 and B 2) do not depend
on U and F since their shape is uniaxial, while these order para-
meters become important for hard isosceles spherotriangles (see
Appendix B 3), whose shape is biaxial. A comprehensive account on
the order parameters for uniaxial particles is given in Appendix B 4,
where generalized expressions for the weighted densities of hard
spherocylinders are found by taking different limits of the results
for spherotriangles. In short, we can obtain analytic results for the
weighted densities, which can be inserted into Eq. (18). Hence, as a
final result, we find the general form

Φex[g] = Φex(ρ, S, U, P, F) (26)

of the excess free energy density, which functionally depends on
the orientational distribution, as a function of the (homogeneous)
density and the four order parameters, which are themselves func-
tionals of the orientational distribution, as they are calculated in
FMT according to Eq. (8).

Recall from Sec. II A 3 that the number of order parameters may
increase when dropping the restriction to particles with a D2h sym-
metry. However, we argue that isosceles spherotriangles can still be
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fully described by S, U, P, and F as the only deviation from D2h sym-
metry is due to their polar shape, which is not reflected by tensors
of even rank. In turn, vectorial weighted densities do, in principle,
provide additional order parameters measuring polarity, but their
contribution is found to be negligibly small (see Appendix B 1 for
a more detailed discussion). This is in line with our expectation
that shape polarity is not sufficient stabilize phases with global polar
order for hard interactions. For lower particle symmetries, such as
for arbitrary spherotriangles, we describe in Appendix B 5 that we
get additional terms proportional to ⟨R̂i j R̂kl⟩ with i ≠ k and/or j ≠ l
in the tensorial weighted densities of rank two, which represent
nondiagonal elements of the Saupe matrix (1) and can thus not be
expressed in terms of our four order parameters alone. More gener-
ally, extending the functional to tensors of higher rank in Eq. (19)
would also give rise to a plethora of additional order parameters.
However, their inclusion would blur the compact analytical picture
we wish to provide in the following.

C. Identification of phase transitions
1. Free minimization with all order parameters

Given the homogeneous ideal gas free energy (21) and an excess
free energy (26) that is a function of the four order parameters S,
U, P, and F, which can be written as in Eq. (8), the Euler–Lagrange
equation (14) becomes

ρ(ln (g(ϕ, θ,ψ)) + 1) + δΦex

δg(ϕ, θ,ψ) = 0. (27)

Using the chain rule for the functional derivative, we obtain

g(ϕ, θ,ψ) = N −1∏
X

eα
2
X fX(ϕ,θ,ψ), (28)

where N is a normalization constant that can be determined by the
condition

1 = ∫ dO g(ϕ, θ,ψ) (29)

and where we have defined the intrinsic order parameters

α2
X ∶= −

1
ρ
∂Φex

∂X
, X ∈ {S, U, P, F}. (30)

Inserting the obtained orientational distribution, Eq. (28), into
the definition (8) of the order parameters and solving the five cou-
pled equations [Eqs. (29) and (30)] for the five unknowns αS, αU ,
αP, αF , and N yield the an orientational distribution function of
the stable homogeneous phase with full information on biaxial-
ity. Unfortunately, it is, in general, not possible to find an explicit
expression for N and thus determine this solution in a closed form.

One option to determine the phase boundaries of a model fluid
would be a numerical solution of Eqs. (29) and (30), where the global
minimum could be identified from comparing the corresponding
free energy Φ = Φid +Φex (evaluated for the obtained orientational
distributions) in the case of multiple solutions. Moreover, as dis-
cussed in Sec. II A 4, a minimization with respect to all four order
parameters would result in a multitude of physically equivalent solu-
tions due to spontaneous symmetry breaking. Instead, our goal is
to get analytic insights and, in particular, also understand which

are the most relevant order parameters for characterizing the dif-
ferent phases. Thus, we proceed step by step and first investigate in
Sec. II C 2 the scenario of uniaxial nematic order, solely character-
ized by S, before considering in Secs. II C 3 and II C 4 the role of the
other order parameters Y ∈ {U, P, F} with respect to this reference
state.

2. Phase transitions involving uniaxial order
For uniaxial particles and an appropriate choice of the coordi-

nate systems (in which both the director and the symmetry axis point
in the z-direction of the laboratory and molecular frame, respec-
tively), the only order parameter relevant for the homogeneous
bulk phase behavior is S. Thus, we may assume Φex[g] = Φex(ρ, S)
instead of the general form (26). We are left with only two equations
[Eqs. (29) and (30) for X = S], which can be solved explicitly,39,40 as
we briefly recapitulate below.

Let us first define α2 ∶= 3α2
S/2 for later notational convenience

such that Eq. (30) becomes

α2 ∶= − 2
3ρ

∂Φex

∂S
. (31)

Normalization of the orientational distribution (28) with
αU = αP = αF = 0 yields the explicit expression

g = g(α, cos θ) = α
D(α) exp (−α2(1 − cos2 θ)) (32)

with Dawson’s integral

D(α) = exp (−α2)∫
α

0
du exp (u2). (33)

Inserting Eq. (32) into Eq. (8), the nematic order parameter

S(α) = 3
4αD(α) −

3
4α2 −

1
2

(34)

is obtained as a function of α. With this result, we are left with the
task to solve a single equation, Eq. (31), in a self-consistent way to
obtain the solution α that minimizes the free energy at a given den-
sity ρ. Vice versa, the solution for the density as a function of α can
even be found in a closed analytic form.

To determine the densities of two coexisting phases, we need
to impose equilibrium conditions. As the temperature T only enters
as a scaling factor that has the same value everywhere in the system,
thermal equilibrium is always ensured. However, we need to demand
that the two phases are in chemical and mechanical equilibrium.
Hence, the chemical potential

βμ = ∂(Φid +Φex)
∂ρ

(35)

and the pressure

βp = βμρ − (Φid +Φex) (36)

must be equal. The phases that can be compared in this way are the
isotropic phase, characterized by the absence of any orientational
order (α = 0), and (uniaxial) nematic phases found as the nontrivial
solution α of Eq. (31) for a given functional.
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For particles with biaxial shape, let us recall that, by choosing
different particle axes that may align with the director, we can also
examine coexistence between different uniaxial nematic phases in
this way (assuming that no other order parameters are relevant).

3. Biaxiality for perfect uniaxial order
A simple way to investigate the uniaxial–biaxial transition is

to assume perfect uniaxial order by fixing the main particle axis in
space. This approximation reduces the complexity of the problem
to that of locating the isotropic–nematic transition in two spatial
dimensions. To make this apparent, we align the desired axis in
the m⃗3-direction of the molecular frame (first option discussed in
Sec. II A 4 and blue coordinate frames in Fig. 2) and then set θ = ψ
= 0 in Eqs. (10)–(13) such that the orientational order (perpendicu-
lar to the main axis) is characterized solely by the remaining polar
angle ϕ. Doing so, we directly find that

S = 1, U = P = 0, F = S2d, (37)

where

S2d =
1

2π ∫ dϕ g2d(ϕ) cos (2ϕ) (38)

is a two-dimensional nematic order parameter and g2d(ϕ) is the
according orientational distribution. The remaining analysis is anal-
ogous to that in Sec. II C 2 and has been performed in Ref. 51 for
two-dimensional rods, where it was demonstrated that the result-
ing self-consistency equation only has one stable solution. Hence,
the uniaxial–biaxial transition density can be identified in a closed
analytic form when using the approximation of perfect uniaxial
order.

Before proceeding in Sec. II C 4 with a more accurate method
to identify the onset of biaxial order, let us revisit alternative choices
to align a biaxial particle in the body frame. As in the final paragraph
of Sec. II A 4, let us focus on an isosceles spherotriangle and sup-
pose that we always align the triangle height with m⃗3. Now, in the
special case of perfect uniaxial order, the manipulations necessary to
describe a deviating director alignment can be intuitively illustrated
by simply rotating the body frame instead of redefining its coordi-
nates. Specifically, to achieve a perfect alignment of the director n⃗
perpendicular to the triangle face [m⃗2 ∥ n⃗; compare the second case
in Fig. 2(a)], we can rotate the body frame by ψ = π/2, θ = π/2 and
consider a shifted polar angle ϕ→ ϕ + π/2 in Eqs. (10)–(13) such
that S = −1/2, U = −

√
3/2, P =

√
3S2d/2, and F = −S2d/2. This result

is equivalent to making the substitutions in Eq. (3) and then choos-
ing the order parameters according to Eq. (37). Moreover, a director
perfectly aligned with the baseline of the triangle [m⃗1 ∥ n⃗; compare
the third case in Fig. 2(a)] corresponds to ψ = 0, θ = π/2 and a free
ϕ in Eqs. (10)–(13) such that S = −1/2, U =

√
3/2, P =

√
3S2d/2, and

F = S2d/2. This result is equivalent to making the substitutions in
Eq. (4) and then using Eq. (37).

In summary, the above examples allow us to make sense of
the altered interpretation of the order parameters upon dropping
the convention that m⃗3 denotes the particle axis, which preferably
aligned with the uniaxial director n⃗: in general, even perfect uni-
axial order (S2d = 0) cannot be described by S alone. However, the
common convention, used in Sec. II C 2, that the order parameter S
measures the degree of uniaxial alignment of the main particle axis

(chosen parallel to m⃗3) with the director (chosen parallel to l⃗ 3) can
always be restored by a redefinition of the body frame.

4. Biaxiality as perturbation of uniaxial order
While the assumption of perfectly uniaxial order made in

Sec. II C 3 is helpful to get a feeling for the relevant order parameters
describing biaxiality, it may be a very crude approximation in prac-
tice. A more reliable calculation of the uniaxial–biaxial transition
is by investigating the instability of the uniaxial solution, Eq. (32),
under small perturbations related to the order parameter F. This
strategy will allow us for an exact location of the transition under
the two assumptions that it is of second order (and can thus be
identified as the limit of stability of the uniaxial phase) and that no
other order parameter is relevant. To assess the latter assumption,
we introduce for the sake of generality in the following presenta-
tion a dummy parameter Y ∈ {U, P, F} representing any of the three
remaining order parameters and consider it as a perturbation to a
phase with S being the only nonzero order parameter, which we refer
to in what follows as the simple uniaxial phase.

Assuming that there is only one relevant order parameter
Y in addition to S, let us first simplify the general orientational
distribution (28) to (recalling that α2

S = 2α2/3)

g(ϕ, θ,ψ) = N −1g0(ϕ, θ,ψ), (39)

g0(ϕ, θ,ψ) = e
2α2

3 fS(ϕ,θ,ψ)+α2
Y fY(ϕ,θ,ψ), (40)

N = ∫ dO g0(ϕ, θ,ψ). (41)

Then, the free energy density (21) of the ideal gas can be rewritten in
the explicit form as

Φid = ρ(− ln N + 2α2

3
S + α2

Y Y + ln (ρΛ3) − 1), (42)

where N , S, and Y are, in general, yet unknown functions of α and
αY ; compare Eqs. (32) and (34) in the special case αY = 0. There-
fore, the total free energy density Φ(α,αY , S, Y , N ) depends on α
and αY both explicitly and implicitly through N (α,αY), S(α,αY),
and Y(α,αY).

To investigate the stability of a uniaxial solution against pertur-
bations due to the order parameter Y , we take a look at the minimum
ofΦ as a function of α2

Y , assuming that the value of α, at a given den-
sity ρ, is not affected by αY at first order. For the ideal term (42), we
get

dΦid

dα2
Y
= ρ(− 1

N
∂N
∂α2

Y
+ 2α2

3
∂S
∂α2

Y
+ Y + α2

Y
∂Y
∂α2

Y
)

= ρ(2α2

3
∂S
∂α2

Y
+ α2

Y
∂Y
∂α2

Y
), (43)

where we have used that the first term in the first line is equal to −Y ,
which can be verified by inserting the definition of N from Eq. (41)
with g0 from Eq. (40) and calculating the derivative within the inte-
gral. As we consider a perturbation of a simple uniaxial phase, we
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insert the equilibrium condition from Eq. (31), which must hold for
αY = 0, such that the derivative of the excess term (26) becomes

dΦex

dα2
Y
= ∂Φex

∂Y
∂Y
∂α2

Y
− ρ 2α2

3
∂S
∂α2

Y
. (44)

Adding up Eqs. (43) and (44), we get

dΦ
dα2

Y
= (ρα2

Y +
∂Φex

∂Y
) ∂Y
∂α2

Y
. (45)

Since the order parameter Y is a monotonous function of αY (both
increase for increasing order), i.e., ∂Y/∂α2

Y > 0, the extremal con-
dition dΦ/dα2

Y = 0 consistently recovers Eq. (30) for X = Y . This
condition and the one for X = S, i.e., Eq. (31), must be mutually
fulfilled in a stable system. In particular, the stability of the simple
uniaxial solution has the necessary condition

EY(α) ∶= (
∂Φex

∂Y
∂Y
∂α2

Y
)
αY=0
= 0. (46)

If it does not hold, the simple uniaxial phase is not stable for the
given value of α and we anticipate that αY > 0.

What is left to be determined in the case that Eq. (46) is ful-
filled is whether the corresponding extremal point of the free energy
in Eq. (45) is indeed a minimum, which is a sufficient condition for
the stability of the simple uniaxial solution with αY = 0 against addi-
tional order associated with the parameter Y ∈ {U, P, F}. To be able
to answer this question, we must calculate the second derivative ofΦ
with respect to α2

Y and determine its sign. To do so, we take another
derivative of Eq. (45), insert Eq. (30) for X = Y (which removes the
second derivative of Y), divide by ρ, and divide by ∂Y/∂α2

Y . This
yields the condition

AY(α) ∶= 1 + ( d
dα2

Y

1
ρ
∂Φex

∂Y
)
αY=0
= 0 (47)

for the value of α, as determined from solving Eq. (31), at which
the simple uniaxial phase becomes unstable if the free energy
has an extremal point at Y = αY = 0. Then, the values of α for
which AY(α) > 0 holds indicate the stability range of the sim-
ple uniaxial solution [if EY(α) = 0 and the value of α is beyond
isotropic–uniaxial coexistence].

Taking a closer look at the stability function in Eq. (47), we
realize that its evaluation only requires the knowledge of all order
parameters up to the first order in α2

Y . This result can be obtained
analytically by expanding Eq. (40) according to

g0(ϕ, θ,ψ) = e
2α2

3 fS(ϕ,θ,ψ)(1 + α2
Y fY(ϕ, θ,ψ)) + O(α4

Y) (48)

and performing an explicit normalization according to Eq. (41).
Truncating the expansion of g0 after the term of order α2

Y , we find
that the nematic order parameter is unaffected for all Y ∈ {U, P, F},
i.e., we have

S(α,αY) = S(α) + O(α4
Y) (49)

with S(α) given by Eq. (34), while we obtain the leading terms

U(α,αU) =
(−3 − 2α2)S(α) + 2α2

8α2 α2
U + O(α4

U), (50)

P(α,αP) =
(−3 − 2α2)S(α) + 2α2

8α2 α2
P + O(α4

P), (51)

F(α,αF) =
(−3 + 14α2)S(α) + 10α2

48α2 α2
F + O(α4

F) (52)

of the other order parameters. In each case, the coefficient of α2
Y is

positive for all finite values of α, justifying the assumption ∂Y/∂α2
Y

> 0 in deriving Eq. (47). Putting everything together, an analytic
expression for AY(α) in Eq. (47) with Y ∈ {U, P, F} can be explicitly
found by inserting (i) the explicit uniaxial solution ρ(α) of Eq. (31)
with Y = 0; (ii) S(α,αY) from Eq. (49), where only the leading term
is relevant; and (iii) either of Eqs. (50)–(52).

The whole calculation is analogous for the general orienta-
tional distribution from Eq. (28), where all four order parameters
are taken into account simultaneously. In this case, all generalized
expansions (49)–(52) would contain constant terms in α, reflecting
the rotational invariance of the problem. This symmetry is broken
by choosing appropriately aligned coordinate frames. In particular,
for our common choice described in Sec. II A 4, we argue that we can
assume P = 0 in our perturbation analysis without loss of generality.

III. RESULTS FOR ORDERING BEHAVIOR
Next, we corroborate the theoretical conclusions drawn in

Sec. II by investigating the ordering behavior of the hard bodies
illustrated in Fig. 1. As uniaxial shapes we consider a cylinder (left)
with diameter D and height H (which equals its mantle length L)
as well as a cone (middle) with a circular base area of diameter D
and height H. To define in each case an aspect ratio l measuring the
particle anisotropy, we choose the convention l = H/D. As a biaxial
shape we consider an isosceles spherotriangle (right), defined as the
parallel set at distance D/2 of an isosceles triangle with base length
A and two side lengths B (or, in other words, a triangular prism
whose three side faces are capped by cylindrical halves connected
by spherical parts). For the spherotriangle, we define the aspect ratio
l = (A + 2B)/(2D) such that it is consistent with the typical conven-
tion l = L/D for a spherocylinder with cylindrical mantle length L
and diameter D. Specifically, the spherocylindrical shape is recov-
ered in two limits: upon setting either A = L and B = L/2 or A = 0
and B = L. Hence, in addition to l, we need a second dimensionless
parameter to fully describe the shape of a spherotriangle. By defining
the shape ratio x as

x = A
2B
= sin γ, (53)

we describe isosceles triangles of all possible opening angles 2γ,
which reduce to spherocylinders in the limiting cases x = 0 and
x = 1. The corresponding weighted densities required to construct
the functional (26) are stated in Appendix B for each particle shape.

Our general strategy is to first justify in Sec. III A that the order
parameters U and P can be disregarded in our treatment of the
homogeneous bulk phases, where we relate the onset of biaxial order
to a nonzero value of F. Then, we discuss the phase diagrams of the
different hard-body fluids, where we only focus on homogeneous
phases. In doing so, we neglect the expected transition to position-
ally ordered liquid crystal phases and the solid state. Therefore, we
draw our phase diagrams in Figs. 4 and 5 with backgrounds fading
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into gray for an increasing packing fraction, indicating the increas-
ing probability that the presented states are only metastable, as other
phases might be predicted by the functional. In Sec. III B, we com-
pare the isotropic–nematic transition of two uniaxial shapes, which
possess the same limiting behavior for extreme aspect ratios: a polar
cylinder and an apolar cone. In Sec. III C, we turn to biaxial isosce-
les spherotriangles. The onset of biaxial order is discussed further in
Appendix C.
A. Relevant order parameters

To illustrate the relevance of the different order parameters,
we perform the perturbation analysis of simple uniaxial nematic
order, as described in Sec. II C 4, to identify whether an appro-
priate description of the state point of interest requires to account
for the order parameters U, P, or F in addition to the standard
nematic order parameter S. We choose to work here with an isosce-
les spherotriangle (whose height specifies the main axis) since it is
the most general shape considered in our investigation and because
its weighted densities in Appendix B 3 depend on all four order
parameters. Moreover, this biaxial shape reduces to a uniaxial sphe-
rocylinder when either the length of the base line becomes zero
(x = 0) or its height vanishes (x = 1). The results of both limits differ
due to the different direction of the assumed symmetry axis within
the body frame, as further discussed in Appendix B 4. In the first
case, the only remaining order parameters are S and P, as expected
for uniaxial particles, while, in the second case, the spherocylinder is
formally treated as being a biaxial particle.

FIG. 3. Stability of the uniaxial nematic phase under different perturbations, inves-
tigated here for hard spherotriangles with x = 0.18 and l = 5. The results are
representative for all dominant director orientations at all shape ratios consid-
ered; compare Fig. 5. According to the legend, we show EU(α) from Eq. (46)
and AP(α) and AF(α) from Eq. (47) as a function of α [not shown are the trivial
results EP(α) = EF(α) = 0 and the meaningless function AU(α)]. As anno-
tated, simple uniaxial order, solely specified by α and thus S, is stable against
a perturbation in Y ∈ {U, P, F} if EY(α) = 0 and AY(α) > 0, where the hori-
zontal black dotted line serves as a guide to the eye. Hence, the value of α for
which AF(α) = 0 indicates the uniaxial–biaxial transition. This stability analysis
of uniaxial order is only meaningful beyond coexistence with the isotropic phase
for α ≥ αIU, as indicated by the dotted vertical line.

As a first step of our perturbation analysis, we must check the
first derivatives of the free energy for the simple uniaxial reference
case αY = 0 with Y ∈ {U, P, F} according to Eq. (46). Indeed, we find
that the free energy has an extremal point for αP = 0 and αF = 0, i.e.,
EP(α) = 0 and EF(α) = 0 for all values of α. Regarding a perturba-
tion in terms of the molecular biaxiality order parameter U, the free
energy has a negative slope at αU = 0, i.e., EU(α) < 0 for 0 < α <∞,
as shown in Fig. 3. This suggests that U affects all ordered phases of
biaxial particles. Accordingly, it was shown in Ref. 33 by minimizing
a modified Onsager functional with respect to a trial orientational
distribution that (a parameter closely related to) U is nonzero at
the isotropic–uniaxial coexistence of hard cuboids. However, ignor-
ing this parameter affects the calculated transition densities only
marginally.33 Moreover, the decreasing absolute value ∣EU(α)∣ of
the slope for large α in Fig. 3 suggests that the effect of U should
become smaller and smaller with increasingly strong uniaxial order
and eventually turn fully irrelevant in the limit α→∞ (or S→ 1),
which is consistent with the prediction U → 0 in Eq. (37). As biax-
ial phases imply a large degree of uniaxial order and because U does
not measure phase biaxiality, we assume that U = 0 as a presumably
good approximation for making analytic progress.

As a second step, we take a closer look at the stability functions
(47) AY(α) with Y ∈ {P, F} [AU(α) is only meaningful at α = 0
since we found that there is otherwise no extremal point of the free
energy at αU = 0]. As detailed in Sec. II C 4, simple uniaxial order,
where only S has a nonzero value, does not appropriately charac-
terize the system if AY(α) < 0, which indicates that the stable state
should have a nonzero value of Y . Representative results for the sta-
bility functions are shown in Fig. 3. In general, AP increases with
increasing α, while the opposite trend is observed for AF . Again,
the limit α→∞ (or S→ 1) of perfect uniaxial order can be directly
understood from the order parameters in Eq. (37). As P → 0, we
always find that AP → 1 because then the term in Eq. (47) involving
the derivatives of Φex does not contribute. In contrast, the limiting
behavior of AF depends on the particular system since F does not
vanish.

Most importantly, Fig. 3 reveals that the central order para-
meter to characterize phase biaxiality in our approach is F and we
can use the criterion AF(α) = 0 to predict the onset of biaxial order.
Indeed, AF(α) is generally found to change its sign at values of α that
are larger than αIU at the isotropic–uniaxial transition. In contrast,
we find AP(α) > 0 for all α > 0, which implies that the simple uni-
axial phase is always stable against perturbations in P, such that the
order parameter P is not relevant for identifying the onset of biaxial
order in our setup. Only within the biaxial phase, we find by general-
izing Eq. (46) that P can take nonzero values because ∂Φex/∂P < 0 at
P = 0 does no longer vanish if F > 0, but this does not affect the phase
boundaries. We also note that the result AP(0) = 0 suggests that the
isotropic phase can equally be destabilized by a nonzero value of P
instead of S (which corresponds to a different director alignment in
the lab frame), but neither by U nor F.

B. Uniaxial bodies: Effect of shape polarity
The homogeneous phase diagrams of hard cones and cylinders

are shown in Fig. 4 depending on the packing fraction η and the
rescaled aspect ratio l/(1 + l). This rescaling of l allows us to dis-
play all relevant information within a range from zero to one. In
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FIG. 4. Isotropic–nematic transition of hard cones (solid lines) and hard cylinders
(dotted lines) depending on the packing fraction η and the rescaled aspect ratio
l/(1 + l). The transition is always found to be of first order, but the density differ-
ence between coexisting phases is not always visible. The limits l/(1 + l) = 0 and
l/(1 + l) = 1 correspond to hard disks (oblate nematic phase) and rods (prolate
nematic phase), respectively. As detailed in the beginning of Sec. III, our functional
is expected to predict phases with positional order at larger packing fractions.
Hence, we indicate the region η ≳ 0.45 of the phase diagram, where positional
order is expected when applying the used functional to hard spherocylinders,40 by
shading the background in light gray.

the phase diagram, the dotted lines represent the isotropic–uniaxial
coexistence densities for cylinders and the solid lines represent the
coexistence densities for cones. Both results are qualitatively simi-
lar. For small (large) aspect ratios l≪ 1 (l≫ 1), the nematic phase
becomes more stable upon further decreasing (increasing) l such
that the shape becomes more and more oblate (prolate). For the
more isotropic shapes at l ≈ 1 in between, no nematic order is
possible and the predicted transition region exceeds densities of pre-
sumed crystallization and even close packing, with an unphysical
maximum at η = 1 in the extreme case. Moreover, both transitions
are found to be of first order with comparable differencesΔηIN of the
packing fractions at coexistence, e.g., we find ΔηIN ≈ 0.001 for cones
and ΔηIN ≈ 0.002 for cylinders with the same aspect ratio l = 0.1. As
further expected, the phase behavior becomes asymptotically equal
in the limits l → 0 and l →∞, where both shapes reduce to hard thin
disks and Onsager rods,63 respectively, as studied with the present
functional in Ref. 40.

However, there are quantitative differences of the phase tran-
sition for the two shapes. For example, the transition densities of
the cylinder fluid peak at the unphysical value η = 1 of the packing
fraction for an aspect ratio of l∗ = 1, while this happens for l∗ ≈ 1.4
in the case of cones. This behavior is a direct mathematical con-
sequence of the particle geometry: we can identify a most isotropic
shape (characterized by l = l∗) by noticing that the order parameter
S drops out of the chosen functional when putting together all ten-
sorial components such that no ordered phase can be described at
all; compare Appendices B 1 and B 2. We are more interested in
the regions where the transition densities are lower and can thus

be expected to describe the actual physical behavior. For compari-
son, the functional used here predicts the onset of smectic order in
a fluid of hard spherocylinders at packing fractions η ≳ 0.4540 and
we indicate this lower bound by using a gray background in Fig. 4.
For all relevant aspect ratios, we predict that the isotropic–nematic
transition occurs at a larger packing fraction for cylinders than for
cones. As the volume of a cone is only one third of that of a cylinder,
the particle number at a given η is larger, which results in a stronger
drive toward orientational order (in turn, the transition occurs at
a lower particle number for cylinders). This behavior is consistent
with that shown in Fig. 2 of Ref. 20 for hard connected spheres with
different radii (mind that the aspect ratios of the bodies compared in
this figure are not equal).

C. Biaxial bodies: Different directors
The homogeneous phase diagram of hard isosceles spherotri-

angles in Fig. 5 depicts the different transition densities as a function
of the shape ratio x for two aspect ratios l = 5 (left) and l = 25 (right).
We find that three distinct uniaxial phases, denoted by Nph, No, and
Npb, which we model independently by choosing the main axis in
the molecular frame to be the triangle height, the face normal, and
the triangle base, respectively, are stable; compare Fig. 2.

The transition from the isotropic phase to a (uniaxial) nematic
is always of first order. In the two limiting cases x = 0 and x = 1,
we recover the known result for hard spherocylinders, which have
been demonstrated to agree well with simulation results.40 It is thus
reassuring for our predictions to remain meaningful at interme-
diate values of x. For increasing biaxiality of the particles (larger
shape ratio when forming a Nph or smaller shape ratio when forming
Npb), the packing fraction at which the transition occurs increases, as
the main axis becomes shorter, thus destabilizing (prolate) nematic
order. When the particle shape is sufficiently oblate, the stability
limit of the isotropic phase is found at higher packing fractions
than in the more prolate case and we eventually predict a transi-
tion to the No phase. Here, the corresponding transition densities
are largely independent of the shape ratio. At higher densities, we
accordingly find two first-order transitions between uniaxial phases
when increasing the shape ratio: first from Nph to No and then from
No to Npb. In both cases, the transition region is slightly bent such
that the oblate phase destabilizes upon increasing the density. Hence,
there is a small range of shape ratios at which we observe two uniax-
ial phases following the sequence isotropic to uniaxial oblate nematic
to uniaxial prolate nematic and, finally, to biaxial nematic.

The biaxial phase, which we identify as a perturbation to sim-
ple uniaxial order (compare Sec. II C 4), is most stable for shape
ratios close to a uniaxial–uniaxial transition, which points to an
equal weight of two distinct directors. Moreover, the metastable
uniaxial–uniaxial transition within the biaxial region (continued
dotted lines) approximately indicates the dominant axis in the case
of biaxial order (which we did not determine explicitly). Our calcu-
lations are based on the assumption that the uniaxial–biaxial transi-
tion is of second order, while we cannot fully rule out the possibility
of a first-order transition within our current analytic treatment. It is,
however, quite reassuring that the biaxial perturbations of two dis-
tinct uniaxial phases at the uniaxial–uniaxial transition agree closely,

J. Chem. Phys. 160, 094903 (2024); doi: 10.1063/5.0188117 160, 094903-12

Published under an exclusive license by AIP Publishing

 05 M
arch 2024 13:08:51

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

FIG. 5. Phase diagram depicting the spatially homogeneous phases of hard spherotriangles at aspect ratios l = 5 (left) and l = 25 (right) in dependence of the packing
fraction η and the shape ratio x. The red lines indicate isotropic–uniaxial coexistence, the blue lines indicate uniaxial–biaxial coexistence, and the orange lines indicate
uniaxial–uniaxial coexistence. The latter becomes metastable within the biaxial regime and is thus shown as dotted lines to give an idea of what might be the dominant
particle axis in the biaxial phase. As illustrated in Fig. 2(a), there are three stable orientations of the nematic director, which are visualized in the left diagram and marked with
Nph, No, and Npb in the right one. Once again, we shaded the area with η ≳ 0.45, where the used functional predicts stable phases with positional order in the limit of hard
spherocylinders (x = 0 or x = 1), in light gray.

suggesting that our calculations are consistent. In contrast, we dis-
cuss in Appendix C that the more simplistic method to assume that
one axis is perfectly ordered (compare Sec. II C 3) is not consis-
tent for the different director orientations: the stability of the biaxial
phase is overestimated for taking Nph or Npb as the reference state
but underestimated for No. On the other hand, these more approx-
imate transition lines (not included in Fig. 5, but detailed in Fig. 6
below) are fully analytic and the second-order nature can explicitly
be verified.

The qualitative behavior described above does not differ
strongly between the two aspect ratios l = 5 and l = 25 considered.
However, we find that the range of shape ratios x that give rise to a
stable No phase increases due to the generally more oblate shape of
spherotriangles with larger aspect ratio l. More strikingly, the onset
of biaxiality occurs at lower densities for these thinner particles, as
the shape also becomes less isotropic (in the opposite limit, l = 0, a
spherotriangle reduces to a perfect sphere). This observation is quite
important when contemplating the global stability of the biaxial
phase, as we must take into account that other phases with positional
order will probably preempt our predicted transitions at packing
fractions η ≳ 0.45 (as indicated by the fading backgrounds in Fig. 5).
Hence, our results suggest that biaxial order should become stable
for larger aspect ratios and, therefore, shape ratios closer to zero or
one (for which oblate and prolate uniaxial phases coexist). This con-
clusion is consistent with previous observations of biaxial nematic
order in a system of extremely anisotropic biaxial particles.64

IV. CONCLUSIONS
In this work, we have provided and applied a general recipe to

investigate the homogeneous phase behavior of biaxial hard particle
fluids within fundamental measure theory (FMT). This framework

allows us to determine all phase boundaries by solving independent
algebraic equations. In addition, we have demonstrated that treat-
ing biaxiality as a perturbation to uniaxial order constitutes a much
more consistent procedure to determine the onset of the biaxial
phase than the simple assumption of perfect uniaxial order. Specifi-
cally, we have considered four order parameters that are established
measures for orientational order in systems of biaxial particles.
While, in principle, even more order parameters will become impor-
tant for more general shapes, we found here that, upon choosing
appropriate coordinate frames, all transitions between homoge-
neous phases can be consistently identified when taking into account
only two parameters: the standard uniaxial order parameter S and
the order parameter F, which measure biaxiality. We have investi-
gated different particle shapes with a relatively low symmetry, which
still allowed for a detailed characterization of the phase behavior
using the order parameters at hand. As exemplified here for hard
cones, uniaxial polar shapes typically require only one order para-
meter S to describe bulk nematic order if the chosen coordinate
systems are properly aligned with the symmetry axis. The formation
of a phase with global polar order can be most likely ruled out in our
hard-core system for entropic reasons. For biaxial shapes with D2h
symmetry (three mutually orthogonal symmetry planes), the four
order parameters considered here are a standard choice.49 We have
demonstrated here that no additional order parameters are needed
to describe the biaxial nematic phase as long as all relevant axes are
polar, which is the case for hard isosceles spherotriangles, but not for
general hard spherotriangles.

Biaxial order can also emerge in mixtures of uniaxial bod-
ies, specifically those involving both prolate and oblate species.65–67

From the point of view of FMT, which naturally applies to mix-
tures without any conceptual complication, we expect that the phase
biaxiality order parameter P will play an important role in such a sce-
nario. A detailed investigation would be an interesting perspective
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for future work. In turn, for arbitrary (convex) hard particles, FMT
offers a straightforward way of identifying additional relevant order
parameters through averages of products of distinct components of
the rotation matrix (5) between the body frame and the lab frame,
following the recipe outlined in Sec. II B 4. A comprehensive inves-
tigation of possible polar order using FMT would potentially require
adding tensorial40 or mixed41 weighted densities to the current func-
tional, or generalizing its expansion into spherical harmonics,44 and
performing a numerical minimization.

Although our present investigation is restricted to spatially
homogeneous systems, FMT can also be applied to inhomoge-
neous situations, which are encountered in the presence of external
walls,38,45,48 for free interfaces between coexisting homogeneous
phases46 or when more complex liquid crystal phases with positional
order emerge.40,44 In view of polar shapes, it would further be inter-
esting to investigate the possibility of local polar order in adjacent
splay domains20,68,69 or twist-bend or splay-bend structures,70–72 sce-
narios in which the global orientational order remains nematic. It
is also worthwhile to calculate the Frank elastic coefficients47,73 for
different particles and investigate the effect of shape polarity and
biaxiality on the elastic behavior. An important issue concerns the
global stability of the biaxial order predicted here: in Ref. 33, the
transition to a biaxial nematic was found to be preempted by the
onset of a smectic phase. While we expect that the same happens
for spherotriangles with l = 5, flatter particles, such as those with
l = 25, were predicted here to exhibit biaxial behavior at lower pack-
ing fractions such that it is more likely that this phase is actually
stable for moderate densities (in particular for even larger values of
l). An elegant possibility to increase the stability range of the spa-
tially homogeneous phases is to introduce slight modifications to the
system, such as polydispersity30,74 or depletion interactions,31 which
can destabilize positional order. Also considering rounder shapes,
which enhance the chance of a particle to slide out of a smectic
layer, can favor the stability of a biaxial phase.74 Hence, one may sus-
pect that a similar mechanism could be at work for smectics formed
by spherotriangles (which require the particles to align in layers
with an alternating up-down configuration) such that these could
be less stable than those formed by spheroplatelets, which would be
worthwhile to investigate in future work.

As a next step, the Brownian dynamics of the hard parti-
cles considered here could be explored by employing the present
functional in a dynamical DFT (DDFT).75–78 For example, in ori-
entationally ordered phases, there is an anisotropic long-time dif-
fusion, which has been explored for uniaxial particles,79 but not
yet for biaxial particles. As a computationally cost-effective alter-
native for spatially inhomogeneous problems, phase field crystal
(PFC) models80,81 are commonly used to study the dynamics in
complex systems. Here, the numerical effort is reduced by con-
sidering the dynamics of an orientation-averaged density field and
different orientational order parameters rather than that of the full
orientation-resolved density.81–84 Consequently, the results obtained
here, which allow us to express DFT functionals as a function of
orientational order parameters in the biaxial case, are an excellent
starting point to derive a PFC model for biaxial particles. Finally, a
further extension would be to investigate active biaxial particles,85

which, also owing to the less symmetric particle shape, may exhibit
circle swimming behavior.86 Being a nonequilibrium system, this
would again require the use of a dynamical theory. By combining

an appropriate FMT functional with the DDFT for biaxial active
particles developed in Ref. 87, the strategy presented in this work
could be generalized to investigate the dynamics of the biaxial order
parameters in the active system.
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APPENDIX A: CALCULATION OF WEIGHTED
DENSITIES

In this appendix, we provide additional details required to fol-
low the general procedure, outlined in Sec. II B 4, to calculate the
weighted densities of the hard bodies shown in Fig. 1.

1. Body parts
We begin by presenting an appropriate parameterization for all

body parts of hard cones, cylinders, and spherotriangles, required
as the second step in Sec. II B 4. This allows us to replace the inte-
gral ∫∂ B dr over the surface ∂B of the body in Eqs. (22)–(24) by a
sum of integrals corresponding to all contributing body parts, with
respect to two parameters each, as specified below. Here, we choose
the parameterization such that the symmetry axis of the cone and
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the cylinder points in the z-direction (i.e., it is parallel to m⃗3). For
the isosceles spherotriangles, we choose the height of the triangle;
compare the left picture in Fig. 2(a).

a. Cone mantle
We parameterize the surface of the cone’s mantle in the form

r(t,φ) =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

R(1 − t
L
) cos (φ)

R(1 − t
L
) sin (φ)

Ht
L

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

, (A1)

where L is defined as

L ∶=
√

H2 + R2. (A2)

Here, R = D/2 is the radius of the cone and H is its height. We use
φ and t to parameterize the cone surface, where φ is the polar angle
and t gives the distance along the cone mantle from the base of the
cone. Therefore, t ∈ [0, L] and φ ∈ [0, 2π].

b. Disk
The surface of a disk of radius R = D/2 is parameterized by

polar coordinates given by two parameters r ∈ [0, R] and φ ∈ [0, 2π].
Therefore,

r(r,φ) =
⎛
⎜⎜⎜⎜
⎝

r cos (φ)
r sin (φ)

0

⎞
⎟⎟⎟⎟
⎠

. (A3)

The cone only requires one disk with the normal vector pointing
down, while the cylinder requires two disks with same parameteri-
zations but opposite normal vectors.

c. Circular ring (torus)
A small complication arises for the cone and the cylinder, as

these bodies contain points with infinite curvature, where the nor-
mal vector is not well defined. To resolve this issue at the circular
ring between mantle and capping disks, we consider appropriate
parts of a torus with width r and radius R = D/2. Then, after defin-
ing all necessary geometric quantities, we take the limit r → 0. For
the calculation of the weighted densities, we use standard torus
coordinates, which are defined as

r(φ, ξ) =
⎛
⎜⎜⎜⎜
⎝

(R + r cos (ξ)) cos (φ)
(R + r cos (ξ)) sin (φ)

r sin (ξ)

⎞
⎟⎟⎟⎟
⎠

, (A4)

where φ ∈ [0, 2π] and, in the case of the cone, ξ ∈ [0, arccos (−R/L)].
For hard cylinders, we need two tori with ξ ∈ [0,π/2] and
ξ ∈ [π/2,π]. When the corresponding weighted densities are cal-
culated (according to the six steps in Sec. II B 4), we finally set
r → 0.

d. Sphere
The surface of a sphere can be parameterized by using the

spherical coordinates

r(ϑ,φ) =
⎛
⎜⎜⎜⎜
⎝

R sin (ϑ) cos (φ)
R sin (ϑ) sin (φ)

R cos (ϑ)

⎞
⎟⎟⎟⎟
⎠

(A5)

and fixing the radial coordinate R. For the cone, we require a part
of a sphere in the limit of R→ 0 on its tip, which allows us to calcu-
late well-defined geometrical quantities, as explained above for the
circular ring. In this case, we have ϑ ∈ [0,π − arccos (−R/L)] and
φ ∈ [0, 2π]. In practice, a sphere in the limit R→ 0 only contributes
to the integrated Gaussian curvature and thus only to the scalar
weighted density n0 (together with the circular ring), which can be
set directly to n0 = ρ, as the one is a simply connected body. For
spherotriangles, there are three parts of a sphere with radius R = D/2
on their edges. As these parts will always add up to a full sphere, we
can simply assume φ ∈ [0, 2π] and ϑ ∈ [0,π] for all contributions at
once.

e. Cylinder mantle
In our calculations for a hard cylinder, we parameterize the

cylinder mantle by choosing a parameter h ∈ [0, H], where H is the
full height of the cylinder and φ ∈ [0, 2π] is an angle. This equivalent
to using standard cylinder coordinates with a fixed radial coordinate
R = D/2. This corresponds to the parameterization

r(h,φ) =
⎛
⎜⎜⎜⎜
⎝

R cos (φ)
R sin (φ)

h

⎞
⎟⎟⎟⎟
⎠

. (A6)

For spherotriangles, we must consider three parts of cylinders with
h ∈ [0, A] or h ∈ [0, B] and always φ ∈ [−π/2,π/2]. Moreover, for
each part, r(h,φ) needs to be rotated in the xz-plane. This rotation
angle is −π/2 for the base line of length A and γ or π − γ for the other
two sides of length B.

f. Triangle
Flat isosceles triangles are parameterized with Cartesian coor-

dinates; therefore,

r(x, z) =
⎛
⎜⎜⎜⎜
⎝

x

0

z

⎞
⎟⎟⎟⎟
⎠

, (A7)

where x ∈ [−A/2, A/2] and z ∈ [0,
√

B2 − A2/4(1 − 2∣x∣/A)] for
x ∈ [0, A/2]. We require in total two triangles with opposite normal
vectors.

2. Geometrical measures
Using the different parameterizations of the relevant body

parts, we can calculate all geometric quantities in Eqs. (22)–(24),
i.e., the two principal curvature directions v1 and v2, the surface
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unit normal vector n, the two principal curvatures κ1 and κ2, the
Gaussian curvature G, and the mean curvature H. This third step in
Sec. II B 4 is carried out below explicitly for the exemplary case of a
cone mantle, whose surface is parameterized in Eq. (A1).

a. Unit vectors
To calculate the unit vectors, we take the derivative of the vector

r(t,φ), given in Eq. (A1), with respect to t and φ, which yields

∂r
∂φ
=

⎛
⎜⎜⎜⎜⎜
⎝

−R(1 − t
L
) sin (φ)

R(1 − t
L
) cos (φ)

0

⎞
⎟⎟⎟⎟⎟
⎠

(A8)

and

∂r
∂t
=

⎛
⎜⎜⎜⎜⎜⎜
⎝

−R
L

cos (φ)

−R
L

sin (φ)
H
L

⎞
⎟⎟⎟⎟⎟⎟
⎠

. (A9)

Both of these two vectors are tangential to the cone’s surface and
perpendicular to each other. Therefore, these vectors, after being
normalized, yield the expressions

v1 =
⎛
⎜⎜⎜⎜
⎝

− sin (φ)
cos (φ)

0

⎞
⎟⎟⎟⎟
⎠

(A10)

and

v2 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

−R
L

cos (φ)

−R
L

sin (φ)
H
L

⎞
⎟⎟⎟⎟⎟⎟
⎠

(A11)

and are precisely the vectors v1 and v2 we have been looking for.
Going on, we find that

∂r
∂φ
× ∂r
∂t
= R

L

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

H(1 − t
L
) cos (φ)

H(1 − t
L
) sin (φ)

R(1 − t
L
)

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

. (A12)

This vector is necessarily perpendicular to the cone’s surface. After
normalizing it, we get our required normal vector, which is given by

n =

⎛
⎜⎜⎜⎜⎜⎜
⎝

H
L

cos (φ)
H
L

sin (φ)
R
L

⎞
⎟⎟⎟⎟⎟⎟
⎠

. (A13)

b. Weingarten map and curvatures
Next, we determine the components of the Weingarten map,

which allows us to calculate the principal curvatures of the cone. In
order to do so, the first step is to calculate the metric tensor g of the
cone’s mantle. The ijth component of the metric tensor is defined as

gij ∶=
∂r
∂xi
⋅ ∂r
∂xj

, (A14)

where xi, xj ∈ {φ, t}. Following this definition, we arrive at

g11 =
∂r
∂t
⋅ ∂r
∂t
= R2

L2 (cos (φ)2 + sin (φ)2) + H2

L2 = 1 (A15)

and

g22 =
∂r
∂φ
⋅ ∂r
∂φ
= R2(1 − t

L
)

2
(cos (φ)2 + sin (φ)2)

= R2(1 − t
L
)

2
, (A16)

while the cross terms

g12 = g21 =
∂r
∂t
⋅ ∂r
∂φ
= 0 (A17)

vanish. Therefore, the metric tensor of the cone’s mantle can be
represented by the matrix

g =
⎛
⎜⎜
⎝

1 0

0 R2(1 − t
L
)

2

⎞
⎟⎟
⎠

, (A18)

whose inverse is given by

g−1 =
⎛
⎜⎜
⎝

1 0

0
1

R2(1 − t
L)

2

⎞
⎟⎟
⎠

. (A19)

In order to calculate the components of the Weingarten map,
we need a second matrix. Its elements are defined by

Bij =
∂n
∂xi
⋅ ∂r
∂xj

, (A20)

where xi, xj ∈ {φ, t}. We calculate

∂n
∂φ
=

⎛
⎜⎜⎜⎜⎜
⎝

−H
L

sin (φ)
H
L

cos (φ)

0

⎞
⎟⎟⎟⎟⎟
⎠

,
∂n⃗
∂t
= 0⃗. (A21)

As we have calculated all required derivatives, we are now ready to
calculate the whole matrix. Both B11 = 0 and B12 = 0 vanish imme-
diately since they contain the vanishing factor ∂n⃗/∂t. Moreover,
B21 = 0 vanishes since ∂n⃗/∂ϕ is perpendicular to ∂ t⃗/∂t from
Eq. (A9). Thus, only

B22 =
∂n
∂φ
⋅ ∂r
∂φ
= H

L
R(1 − t

L
) (A22)
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contributes a nontrivial result such that

B =
⎛
⎜
⎝

0 0

0
H
L

R(1 − t
L
)

⎞
⎟
⎠

. (A23)

Finally, the matrix representation of the Weingarten map is given by

W = g−1 ⋅ B =
⎛
⎜⎜
⎝

0 0

0
H

LR(1 − t
L)

⎞
⎟⎟
⎠

, (A24)

where we have inserted Eqs. (A19) and (A23).
From differential geometry, it is known that the principal cur-

vatures are just the eigenvalues of the Weingarten map. Since W is a
diagonal matrix, the eigenvalues are κ2 = 0 with principal direction
v2 and κ1 = H

LR(1−t/L) with principal direction v1. Therefore, the cone
mantle has the Gaussian curvature

K = κ1κ2 = 0 (A25)

and the mean curvature

H = 1
2
(κ1 + κ2) =

1
2

H
LR(1 − t

L)
, (A26)

which depends on the position t on the cone’s mantle. As expected,
the curvatures are identical to those of a cylinder in the limit H →∞,
L→∞ with H/L→ 1 and finite R.

APPENDIX B: WEIGHTED DENSITIES
1. Hard cones

We now present the full set of relevant weighted densities for
hard cones with height H and base diameter D = 2R. For simplic-
ity, we neglect the order parameter P by assuming P = 0, as it is
irrelevant for the homogeneous bulk phase behavior for our choice
of coordinates (compare the discussion in Sec. II A 4). The contri-
bution of P and other order parameters will be explicitly shown in
Appendix B 4 for hard spherocylinders.

We begin by giving the scalar weighted densities

n0 = ρ,

n1 =
ρ
4
(H + R arccos( −R√

H2 + R2
)),

n2 = ρ πR(R +
√

H2 + R2),

n3 =
ρ
3
πR2 H.

(B1)

For our choice of coordinates, only the third component

(Ð→n 1)3 = ρR
H − R −

√
H2 + R2

4
√

H2 + R2
⟨cos (θ)⟩ (B2)

of the first vector weighted density is nonzero, where ⟨cos(θ)⟩
= ∫ dOg(ϕ, θ,ψ) cos(θ) denotes the orientational average of cos(θ),
as in Eq. (8), which is zero for (apolar) nematic order. SinceÐ→n 2 =

Ð→
0 ,

the vectors do not contribute overall such that there is no order para-
meter like ⟨cos(θ)⟩ that is sensitive to polar order in the functional
employed here. In view of other shapes, we learn here that the vecto-
rial contributions do not necessarily support polar order even if the
particle shape is polar such that it appears to be a safe approximation
to generally neglect these terms in our study.

The diagonal tensor weighted densities read

(←→n 1)11 = (←→n 1)22

= ρ
24
(H

5H2 − 2R2

(H2 + R2)
− 3Rx̂)S,

(←→n 1)33 =
ρ

24
(H

4R2 − 10H2

(H2 + R2)
+ 6Rx̂)S,

(B3)

where

x̂ ∶= 1
2
(arccos(− R√

H2 + R2
) − HR

H2 + R2 ) (B4)

and

(←→n 2)11 = (←→n 2)22

= ρ
6
((−2πR2 + πR

H2 − 2R2
√

H2 + R2
)S

+ 2πR2 + 2πR
√

H2 + R2),

(←→n 2)33 =
ρ
3
((2πR2 − πR

H2 − 2R2
√

H2 + R2
)S

+ πR2 + πR
√

H2 + R2),

(B5)

while all nondiagonal elements vanish.

2. Hard cylinders
Here, we give the full set of weighted densities for hard cylin-

ders40 with height H and diameter D, setting again P = 0. We start
by giving the scalar weighted densities

n0 = ρ,

n1 =
ρ
8
(2H + πD),

n2 =
ρ
2
(2πHD + πD2),

n3 =
ρ
4
πHD2,

(B6)

while the vectors vanish for this apolar shape. The diagonal
components of the (←→n 1) tensor are

(←→n 1)11 = (←→n 1)22 = −
1
2
(←→n 1)33

= ρ
32
(4H − πD)S. (B7)
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The diagonal components of the (←→n 2) tensor are

(←→n 2)11 = (←→n 2)22

= ρ
6
(πHD(2 + S) + πD2(1 − S)),

(←→n 2)33 =
ρ
6
(2πHD(1 − S) + πD2(2S + 1)).

(B8)

Again, all nondiagonal elements vanish. The total contribution of
the tensors to ϕ2 in Eq. (19) is

Tr[←→n 1
←→n 2] = ρ2πD

(H −D)(4H − πD)
32

S2, (B9)

which vanishes for H = D (and 4H = πD). It can also be shown
that the expression in Eq. (20) vanishes for H = D such that the
dependence on S drops out of the functional for such a shape.

3. Hard spherotriangles
The scalar weighted densities of hard isosceles spherotriangles

with diameter D, base length A, and two sides of length B read

n0 = ρ,

n1 =
ρ
8
(A + 2B + 4D),

n2 =
ρ
2
(πD(A + 2B) + 2πD2 + A

√
4B2 − A2),

n3 =
ρ

24
(3πD2(A + 2B) + 4πD3 + 12DA

√
4B2 − A2),

(B10)

where the contributions which are quadratic, linear, and constant
in D originate from the spherical caps, parts of cylinder mantles,
and triangles, respectively. In general, the vectors do yield nonzero
contributions, which vanish for the apolar phases of interest (see
the discussion in Appendix B 1) and are omitted here due to their
lengthy general form. Only in the special case A = B of equilateral
spherotriangles, we have Ð→n 2 =

Ð→
0 such that the vectors are truly

irrelevant.
The tensor weighted densities explicitly depend on the shape

ratio x of the spherotriangles through γ, which is the half opening
angle of the triangle; see Fig. 1. The nonvanishing diagonal compo-
nents of ←→n 1 have only contributions from the cylindrical parts and
read

(←→n 1)11 = (←→n 1)22(S, U,−P,−F)

= ρ
32
(A(−S +

√
3U +

√
3P − 3F)

+ 2B((−S +
√

3U +
√

3P − 3F) sin (γ)2

+ 2(S −
√

3P) cos (γ)2)) (B11)

and

(←→n 1)33 =
ρ

16
(A(S −

√
3U)

+ 2B((S −
√

3U) sin (γ)2 + 2S cos (γ)2)). (B12)

The relation between (←→n 1)11 and (←→n 1)22 in Eq. (B11) stems from
the fact that these tensor components are related by a polar rotation
of the body in the lab frame, achieved by a redefinition ϕ→ ϕ ± π/2
of the polar angle ϕ. Just like n2, the tensor ←→n 2 has contributions
from all body parts. Its relevant diagonal components read

(←→n 2)11 = (←→n 2)22(S, U,−P,−F)

= ρ
24
(πAD(−S +

√
3U +

√
3P − 3F + 2)

+ 2πBD((−S +
√

3U +
√

3P − 3F) sin (γ)2

+ 2 (S −
√

3P) cos (γ)2 + 4)

+ 8πD2 + 2A
√

4B2 − A2(−S +
√

3P + 1)) (B13)

and

(←→n 2)33 =
ρ

12
(πAD(2 + S −

√
3U)

+ 2πBD((S −
√

3U) sin (γ)2

− 2S cos (γ)2 + 2)

+ 4πD2 + A
√

4B2 − A2(2S + 1)). (B14)

To determine the tensorial weighted densities for other orien-
tations of the primary director, we can use the substitutions from
Eq. (3) or Eq. (4), as detailed in Sec. II A 4. For example, aligning the
z axis of the body frame with the base line of the triangle, compare
the right picture in Fig. 2(b), we get the first tensor component

(←→n 1)11 =
ρ

16
(A (S −

√
3P)

+ B(2(S −
√

3P) sin (γ)2

+ (−S +
√

3U +
√

3P − 3F) cos (γ)2)) (B15)

upon applying Eq. (4) to Eq. (B11).

4. Limits of hard spherocylinders
In the limits x = 0 or x = 1 of extreme shape ratios, a sphero-

triangle turns into a spherocylinder. Therefore, by evaluating the
weighted densities of hard spherotriangles from Appendix B 3 for
these special cases, we can directly obtain the full set of weighted
densities of hard spherocylinders for two different choices of the
body frame, which results in a different dependence on the order
parameters S, U, P, and F, as we elaborate below. Recall that we have
used the convention, illustrated in the left picture in Fig. 2(a), that
the height of the triangle points in the z-direction of the body frame.

In the first case, x = 0, we recover the standard convention used
for uniaxial bodies. By setting A = 0 and L = 2B in Eqs. (B11)–(B14),
we obtain the tensor components
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(←→n 1)11 = ρDL(S
8
−
√

3P
8
),

(←→n 1)22 = ρDL(S
8
+
√

3P
8
),

(←→n 1)33 = ρDL(−S
4
),

(←→n 2)11 = ρ(
D2π

3
+ DLπ

6
(2 + S −

√
3P)),

(←→n 2)22 = ρ(
D2π

3
+ DLπ

6
(2 + S +

√
3P)),

(←→n 2)33 = ρ(
D2π

3
+ DLπ

6
(1 − S)),

(B16)

while the total contribution of the tensors to ϕ2 in Eq. (19) is

Tr[←→n 1
←→n 2] = ρ2 DL2π

8
(S2 + 3P2). (B17)

As we can see, within our general treatment, there is a depen-
dence on P in addition to the standard nematic order parameter
S. Setting P = 0, these weighted densities reduce to the common
expressions previously reported in the literature (we also recover
the orientation-independent scalar weighted densities which are
not repeated here).39,40,43,47 Hence, neglecting P has already been
demonstrated to be well justified when one is only interested in the
bulk phase behavior, which we have explicitly verified in Sec. III A.
The form of the weighted densities in Eq. (B16) is, however, help-
ful to understand physical scenarios where the uniaxial symmetry of
the phase is broken, for example, due to external fields. Most impor-
tantly, we anticipate the explicit importance of P for the bulk phase
behavior of (uniaxial) rod-disk mixtures.

While we have seen that P contributes, in general, to the
weighted densities of uniaxial bodies, U and F do not appear in
Eq. (B17) because a spherocylinder is not a biaxial particle. How-
ever, in the second case, x = 1, the symmetry axis of the resulting
spherocylinder does not coincide with the orientation in the body

frame, which means that we formally treat the body as if it was biax-
ial. Indeed, if we set L = A = 2B in Eqs. (B11)–(B14), we arrive at the
following contribution of the tensorial weighted densities:

Tr[←→n 1
←→n 2] = ρ2 D2Lπ

32
((
√

3U − S)2 + 3(
√

3F − P)2), (B18)

which depends on all four order parameters [the same result can be
obtained from Eq. (B17) by performing the substitutions in Eq. (4)].
These weighted densities still contain the same physics, but one has
to give up the interpretations of the order parameters outlined in
Sec. II A 4. In our particular example, this means that S does not
appropriately describe the uniaxial order of hard spherocylinders
when setting U = P = F = 0 in Eq. (B18).

To show the difference between the two descriptions of hard
spherocylinders, we show in Fig. 6 the predicted isotropic–uniaxial
transition lines (only allowing for nonzero values of S) of hard
spherotriangles for the full range of shape ratios x of each cho-
sen director orientation. This compilation includes results that are
unstable with respect to a different director orientation and thus
not contained in Fig. 5. The left plot in Fig. 6 shows that the stable
spherocylinder limit of isosceles spherotriangles aligned along the
direction of their height is obtained for x = 0 with Eq. (B17), while
the transition for x = 1 with Eq. (B18) is located at much higher den-
sities and in the unstable regime. The same unphysical result is found
in both limits x = 0 and x = 1 for isosceles spherotriangles aligned
along the normal direction to their face (central plot in Fig. 6) and
in the limit x = 0 for isosceles spherotriangles aligned along their tri-
angle base (right plot in Fig. 6). In the latter case, taking x = 1 again
yields the stable spherocylinder limit.

5. Comments on general hard spherotriangles
For previous calculations, due to the symmetry of isosceles

spherotriangles, all nondiagonal terms of the tensor weighted densi-
ties were automatically zero. However, for arbitrary spherotriangles
with side lengths A, B, and C ≠ B, there may be both such nonzero
cross terms and additional order parameters resulting from orien-
tational averages of mixed terms ⟨R̂i j R̂kl⟩ with i ≠ k and/or j ≠ l of

FIG. 6. Phase diagrams of hard spherotriangles upon imposing the three different orientations of the uniaxial director illustrated in Fig. 2, as indicated by the drawn bodies. In
each plot, the red lines indicate the isotropic–uniaxial coexistence densities calculated by free minimization, following Sec. II C 2, and the blue lines indicate the uniaxial–biaxial
transition identified by a perturbation of simple uniaxial order as outlined in Sec. II C 4. In addition to these results, which are also shown in Fig. 5, we compare the predictions
of the perfect uniaxial approximation (purple dotted line) to locate the uniaxial–biaxial transition, as outlined in Sec. II C 3. The black dots mark the triple points, where two
uniaxial phases with different director orientations coexist with either the isotropic or the biaxial phase; compare Fig. 5. The phase diagrams presented here thus also include
the regions beyond these points, where the given director orientation is unstable.
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the rotation matrix, which are not included in Eq. (25), since these
correspond to cross terms of the Saupe matrix.

To give an example of such cross terms, we consider the limit
of perfect uniaxial order, as introduced in Sec. II C 3, for a general
spherotriangle with the nematic director parallel to the face nor-
mal of the triangle; compare the central picture in Fig. 2(a). Then,
the nondiagonal elements of the tensorial weighted densities can be
given in the compact form

(←→n 1)12 = (←→n 1)21

= ρ
48
(B sin (μ) cos (μ)(4S2d − 1)

+ C sin (η) cos (η)(4S2d − 1)) (B19)

and

(←→n 2)12 = (←→n 2)21

= ρ
6
(πDB sin (μ) cos (μ)(1 − 4S2d)

+ πDC sin (η) cos (η)(1 − 4S2d)), (B20)

where S2d, as defined in Eq. (38), is identified according to Eq. (37)
and the angles μ and η are defined as

μ = arccos(B2 + A2 − C2

2BA
),

η = arccos(B2 + C2 − A2

2BC
) + μ.

(B21)

Note that the cross terms presented here vanish for isosceles
spherotriangles, i.e., if we set B = C.

APPENDIX C: DETAILS ON THE UNIAXIAL–BIAXIAL
TRANSITION

In the main text, we outline two different methods to deter-
mine the location of the uniaxial–biaxial transition. First, in the
perfect uniaxial approximation, we assume S = 1 and P = U = 0,
which leaves us with a single order parameter F ≃ S2d, and we can
analytically minimize the basic equations of DFT as for the func-
tional in two spatial dimensions. We explain this in greater detail in
Sec. II C 3. We also use a perturbative approach, where we locate
the transition as the state point where simple uniaxial order (solely
described by a nonzero value of S) becomes unstable for a small per-
turbation by a finite value of the full biaxiality order parameter F,
while setting P = U = 0. More details are given in Sec. II C 3, and the
results of this method are included in our phase diagrams of hard
isosceles spherotriangles in Fig. 5, where we argue that it is quite reli-
able, since the uniaxial–uniaxial–biaxial triple points are consistently
approached from both sides, where uniaxial order is assumed with
respect to different main axes. We thus expect that the assumption
that one particle axis is perfectly aligned yields only reliable results
at unrealistically high packing fractions.

To compare our two approaches, we present in Fig. 6 three
phase diagrams of hard isosceles spherotriangles, each obtained
upon imposing a different type of uniaxial order, as illustrated in
Fig. 2(a), but here over the full range 0 ≤ x ≤ 1 of shape ratios.

Compared to the perturbative approach, the perfect uniaxial approx-
imation systematically overestimates the packing fraction at the
uniaxial–biaxial transition for the prolate uniaxial phases Nph and
Npb, while it is underestimated in the oblate case. Therefore, when
only considering the most stable ordered state (where the transition
is predicted at the lowest density among the results for the three
different uniaxial orientations), the perfect uniaxial approximation
does not result in a consistent location of the triple points, in contrast
to the perturbation result shown in Fig. 5.

However, one noteworthy advantage of the perfect uniaxial
approximation, as opposed to the perturbation approach, is its abil-
ity to produce closed analytic expressions for the transition densities
(although these are, in general, too long to be stated here). Only in
the limits x → 0 and x → 1 of hard spherocylinders, the results can be
presented in a compact form (recall the discussion in Appendix B 4).
In the limit where the spherocylinder is perfectly aligned along its
long axis, no biaxial order is possible as F drops out of the func-
tional; compare Eq. (B17). Hence, the results of our two methods
in Fig. 6 become comparable when this limit is approached. In
the (unphysical) opposite limit of the rod axis being perpendic-
ular to its perfect orientation, F remains in the functional, com-
pare Eq. (B18), and the uniaxial–biaxial transition can be formally
located at

ηIU =
3
√

1536l2 + 225l4 + 2304l3 − 45l2 − 192l − 128
18l2 − 192l − 128

, (C1)

which is given as an explicit function of the aspect ratio l.
For l = 5, we get ηIU = 0.255, which lies below the (unstable)
isotropic–uniaxial transition and is thus not shown in Fig. 6.
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