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ABSTRACT
The Mpemba effect describes the phenomenon that a system at hot initial temperature cools faster than at an initial warm temperature in
the same environment. Such an anomalous cooling has recently been predicted and realized for trapped colloids. Here, we investigate the
freezing behavior of a passive colloidal particle by employing numerical Brownian dynamics simulations and theoretical calculations with a
model that can be directly tested in experiments. During the cooling process, the colloidal particle exhibits multiple non-monotonic regimes
in cooling rates, with the cooling time decreasing twice as a function of the initial temperature—an unexpected phenomenon we refer to
as the Double Mpemba effect. In addition, we demonstrate that both the Mpemba and Double Mpemba effects can be predicted by various
machine-learning methods, which expedite the analysis of complex, computationally intensive systems.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0225749

I. INTRODUCTION

The Mpemba effect challenges conventional understanding by
proposing that hot water can cool and freeze faster than its cooler
counterpart, contrary to intuitive expectations.1 Despite extensive
experimental investigations into this phenomenon in water, a
consensus regarding its underlying cause remains elusive.2–7 Recent
research advances have demonstrated that the Mpemba effect is not
limited to the freezing of water but occurs in a variety of contexts.
This phenomenon has been identified in granular gases,8–13 inertial
suspensions,14 Markovian models,15–18 optical resonators,19 molec-
ular gases in contact with a thermal reservoir,20,21 spin glasses,22

and quantum systems.23–32 Notably, it has also been observed in
colloidal particle systems undergoing rapid thermal quenching.33,34

In its simplest form, single particles are confined within
one-dimensional asymmetric double-well potential, replicating the
liquid and frozen states of water. The synthesis of experimental
findings and theoretical insights, unravel the mechanisms driving
this intriguing effect,15,35,36 thereby advancing our comprehension
of its fundamental principles.

In this study, we examine the cooling process of a trapped
colloid within an asymmetric potential featuring a steep lin-
ear confinement, as shown in Fig. 1(a), and discover that it
exhibits a pronounced Mpemba effect, occurring not just once but
twice if the initial temperature is varied [Figs. 1(b) and 1(c)]—a

phenomenon that is called as Double Mpemba effect. This effect
has been previously observed in classical systems of inertial suspen-
sions,14 quantum systems,37,38 and in other Markovian models.16,39

However, to the best of our knowledge, the Double Mpemba effect
has not been reported before for trapped colloids.

Furthermore, we explore how imposed bath temperatures
influence the type of Mpemba—normal or Double—that the system
exhibits. We have generalized a simple theoretical framework pro-
posed by Kumar and Bechhoefer33 that explains the observations of
numerical simulations and quantitatively agrees with the analysis
based on the eigenfunction expansion of the Fokker–Planck
equation.15,33,34,40

Furthermore, traditional experimental and computational
approaches to studying the Mpemba effect often face challenges due
to the complexity and variability of the parameters involved. Specif-
ically, predicting the type of Mpemba effect requires calculating
cooling times across various initial temperatures or determining
eigenvectors, both of which are computationally intensive. To over-
come these challenges, we propose a novel approach that lever-
ages theoretical modeling and machine learning41–44 to predict the
colloidal Mpemba effect with high accuracy. Amorim et al.41 have
also shown that machine-learning methods, such as decision trees,
neural networks, and regression techniques, can accurately predict
the Mpemba effect in complex systems such as the Ising model
without explicit eigenvector calculations.
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FIG. 1. (a) Schematic of the asymmetric potential U(x) with a steep linear con-
finement beyond xmin and xmax, potential minima at xa and xb, and a maximum at
x∗. The inset shows the energy barriers ΔEa and ΔEb for the potential minima
at xa and xb, respectively. (b) Double Mpemba effect, where each colored arrow
represents a cooling process and the arrow’s length depicts the time the system
needs to cool down. (c) Cooling time tc as a function of initial temperature to a fixed
bath temperature kBTbath = 10−4F0ℓ. [Parameters: xmin = −0.25ℓ, xmax = 0.75ℓ,
F1 = 6 × 10−5F0ℓ].

To illustrate the Mpemba effect, imagine two systems with tem-
peratures ranging from warm to hot. Typically, when these systems
are cooled to a set cold bath temperature, we would expect that the
hotter the system, the longer it would take to cool. However, the
Mpemba effect occurs when the hot system cools faster than the
warm one. In the context of a passive colloid in an asymmetrical
potential, this phenomenon arises because the hot particle possesses
enough residual energy—defined as the mean potential energy after
the system has begun cooling—to overcome potential barriers more
effectively. This allows the hot particle to quickly settle into the
cold state. In contrast, a warm particle, having less residual energy,
struggles to cross the barrier, resulting in a slower cooling process.
We show the existence of the Double Mpemba effect and that the
key factors influencing the Mpemba effect are not only the resid-
ual energy but also the initial state of the system and the final bath
temperature Tbath. This finding broadens our understanding of the
Mpemba effect and highlights the complexity of cooling dynamics
in these systems.

II. MODEL AND SIMULATION TECHNIQUE
We explore the process of cooling for a Brownian colloidal

particle confined within a double-well potential through numerical
simulations. The symmetry of the double-well potential is broken
either by bringing a tilt in the potential or by the asymmetric place-
ment of the potential in a domain [see Fig. 1(a)]. The motion of
the Brownian particle, experiencing fluctuations at temperature T
and undergoing overdamped motion, is described in one spatial
dimension by Langevin equation,

dx
dt
= −

1
γ
∂xU(x) + η(t), (1)

where η(t) represents the Gaussian white noise with zero mean
and variance ⟨η(t)η(t′)⟩ = 2DTδ(t − t′). Here, the noise strength
corresponds to the translational diffusion constant DT of the
particle, which is determined by the temperature T, given by
the Stokes–Einstein relation DT =

kBTbath
γ , where kB denotes the

Boltzmann constant and γ represents the friction coefficient. The
particle is subjected to an external double-well potential, similar to
that described in Refs. 34 and 45, as shown in Fig. 1(a), and defined
as follows:

U(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−F0x + κ, if x < xmin,

F1

⎡
⎢
⎢
⎢
⎢
⎣

(1 −
x2

α2 )

2

−
1
2

x
α

⎤
⎥
⎥
⎥
⎥
⎦

, if xmin < x < xmax,

F0x + κ1, if x > xmax.

(2)

The components in Eq. (2) that scale with F0 signify the
presence of a linear potential with a slope corresponding to the
maximum force that can be achieved experimentally,33 while the
component proportional to F1 describes an asymmetric poten-
tial featuring two minima at xa and xb of varying heights and a
maximum at x∗. The constants κ and κ1 ensure the continuity of
the potential at x = xmin and x = xmax.

The length of the confining box denoted as ℓ = ∣xmax − xmin∣,
serves as a convenient unit of length, and the parameter α is set to
0.125ℓ. When the length scale is combined with the translational
diffusion constant, it yields a natural time scale expressed as τD =

ℓ2

DT
.

Throughout this paper, the temperatures and energies are defined in
units of F0ℓ and γ is set to unity.

To gain quantitative insight into the relaxation process, we
quantify the distance between the target equilibrium distribution
πbath(x)∝ exp(−U(x)/kBTbath) and the probability distribu-
tion P(x, t) during the cooling process. To find P(x, t), we
first generate the initial probability distribution P(x, t = 0)
∝ exp(−U(x)/kBTinitial) by performing 5000 independent sim-
ulation runs. For each run, we first equilibrate the system at
temperature Tinitial. Once equilibration is achieved, we record
the particle’s position. These recorded positions are then used
to construct the initial probability distribution P(x, t = 0), repre-
senting the particle’s equilibrium state at Tinitial. Subsequently, we
perform a rapid temperature quench to a bath temperature Tbath.
For each of the 5000 independent runs, we quench the system to
Tbath and allow the particle to equilibrate at this new temperature.
After equilibration in each run, the particle’s position is recorded.
The data from these 5000 runs are then used to derive the final
probability distribution P(x, t), which reflects the particle’s state at
the bath temperature Tbath. Now, to construct the distance measure,
we discretize the spatial components of both πbath(x) and P(x, t)
into N grid points, resulting in πi,bath and Pi(t), respectively. The
distance measure is then defined as

𝒟(t) =
1
N

N

∑
i=0
∣Pi(t) − πi,bath∣. (3)

From this measure, the cooling time tsim
c can be determined. This

is defined as the time when 𝒟(t) has decreased to the noise level,
specified by σ𝒟 = 0.01, which accounts for the limitations imposed
by the finite sample size (see Appendix C).
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In the following, we present a theoretical formula by gen-
eralizing the approach proposed by Kumar and Bechhoefer33 for
calculating the cooling time scale of particles starting from vari-
ous initial temperatures Tinitial. The occupation ratios/probabilities
Na(T) and Nb(T), which indicate the probability of a particle in
the left-hand domain (−∞, x∗) and right-hand domain (x∗,∞),
respectively, at a temperature T with β = 1

kBT in equilibrium are
given as

Na(T) = ∫
x∗

−∞ exp (−βU(x)) dx

∫
∞
−∞ exp (−βU(x)) dx

, (4)

Nb(T) = 1 −Na(T). (5)

The time scale for cooling is approximately given as46,47

tc ≈ τD∣Na(Tinitial) −Na(Tbath)∣ exp(
ΔEi

kBTbath
). (6)

The Arrhenius-like exponential factor accounts for the diffusion
over an energy barrier that a particle originally in the potential hole
at xa, will escape to xb crossing the barrier at x∗ [see Fig. 1(a)].47–51

The expressions ΔEa = U(x∗) −U(xa) and ΔEb = U(x∗) −U(xb)

define the energy barriers for the potential minima at xa and xb,
respectively. Here, ΔEi is equal to ΔEa if Na(Tinitial) > Na(Tbath);
otherwise, it is equal to ΔEb.

III. RESULTS
A. Cooling scenarios

In Fig. 1(c), we present the cooling curve calculated from the
theory [see Eq. (6)] as a function of different initial temperatures.
The cooling time tc has a double minimum, indicating the pres-
ence of the Double Mpemba effect for our chosen parameters. The
numerical simulations further confirm theoretical predictions where
we calculate the distance measure 𝒟(t) as defined in Eq. (3) in Fig. 2.
We show that particles at temperatures T2 and T4 cool very quickly,
while particles at temperatures T1 and T3 take longer to relax, fully
consistent with the theoretical calculations.

To understand the effect of different bath temperatures, we
present the particle distribution and calculate the normalized cool-
ing time from the theoretical model at various bath temperatures,
as shown in Figs. 3(a) and 3(b), respectively. We observe that, at
Tbath = 5 × 10−5F0ℓ, the system exhibits the normal Mpemba effect,
whereas at Tbath = 10−4F0ℓ, a strong Mpemba effect is observed.
At Tbath = 5 × 10−4F0ℓ, the cooling time shows double minima,
indicating the presence of the Double Mpemba effect.

To validate the theoretical model and numerical simulations,
we employ a recent approach that relates the Mpemba effect to
an eigenvalue expansion.15,34,35 The underlying probability density
P(x, t) of particle positions is given by the Fokker–Planck Equation
(FPE) as

∂P(x, t)
∂t

= −
1
γ
∂

∂x
(F(x)P(x, t)) +

kBTbath

γ
∂2

∂x2 P(x, t) ≡ L̂P(x, t),

(7)

FIG. 2. Relaxation dynamics of the distance measure 𝒟(t) are examined by
comparing the probability distributions of colloids at different initial temperatures:
kBT1 = 0.001F0ℓ, kBT2 = 0.007 65F0ℓ, kBT3 = 0.1F0ℓ, kBT4 = 0.425F0ℓ, and
the probability distribution at the target bath temperature kBTbath = 10−4F0ℓ. For
comparison, fluctuating numerical data for the distance are also shown when the
system is a priori in the equilibrium cold state at bath temperature, which brings
about a numerical noise level. These temperatures correspond to the points high-
lighted in Fig. 1(c), illustrating the Double Mpemba effect. Parameters are the same
as in Fig. 1.

where L̂ is the Fokker–Planck operator for Brownian motion and
F(x) = −∂U(x)

∂x . The solution P(x, t) of the FPE in terms of its
eigenfunctions is given as

P(x, t) = πbath(x) +
∞
∑
k=2

ak,inie
−λktvk(x). (8)

The functions vk(x) are the kth right eigenfunction. They have an
eigenvalue λk, ordered such that λ1 = 0 < λ2 < λ3 ⋅ ⋅ ⋅. The coeffi-
cients ak,ini are real numbers dependent on the initial temperature
and potential energy. Since λ2 is smaller than λ3, the higher-order
terms become negligible, making λ2 the slowest relaxation rate of
the system. However, when a2 = 0, the system relaxes much faster
with e−λ3t leading to a strong Mpemba effect. In Fig. 3(c), we display
the normalized ∣a2(T)∣ at different bath temperatures and demon-
strate that the cooling behavior in Fig. 3(b) quantitatively agrees with
∣a2(T)∣. This shows that the cooling time at different initial tempera-
tures is correlated to the second eigenvalue coefficient ∣a2(T)∣ of the
Fokker–Planck equation. In Fig. 3(d), we illustrate the schematics of
the variation of the cooling time plots for different types of Mpemba
effects.

To understand the origin of different Mpemba effects, we
examine the role of the first term defined in Eq. (6). In cases where
the initial occupation probability matches the occupation probabil-
ity at the final bath temperature, the particle relaxes very quickly as
it does not need to cross the barrier to hop from the potential well at
xa to xb, and vice versa. In Fig. 4(a), we show the occupation prob-
ability Na(Tinitial), which indicates the likelihood of a particle being
in the right-hand domain (x∗,∞) as a function of initial tempera-
ture Tinitial. If for a given Tbath, Na(Tinitial) = Na(Tbath), the particle
immediately relaxes to the cold distribution, resulting in a pro-
nounced Mpemba effect. Conversely, if Na(Tinitial) ≠ Na(Tbath), the
particle must overcome the potential barrier to reach the equilibrium
distribution at Tbath. Since crossing this barrier takes a considerable
amount of time, the particle relaxes slowly. In Fig. 4(a), we observe
that for the No Mpemba effect, Na(Tinitial) increases monotonically
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FIG. 3. (a) Probability distributions of colloidal particles at different kBTbath temperatures as indicated in the figure. (b) Cooling time normalized to [0, 1] by the maximum value
of cooling time [max(tc)] in the temperature range 5 × 10−5F0ℓ to 0.5 × F0ℓ as a function of initial temperature for different bath temperatures calculated from the theory. (c)
The normalized second eigenvalue coefficient ∣a2(T)∣

max (a2(T)) as a function of the initial temperature kBT initial is obtained by numerical calculations based on the Fokker Planck

equation. (d) Schematics of the variation of cooling time as a function of initial temperature illustrating No Mpemba, Mpemba, and Double Mpemba effects. Parameters are
the same as in Fig. 1.

with increasing temperature for the given parameters as indicated in
the caption. This implies that hotter particles will take longer to relax
to the cold distribution compared to warmer particles, indicating the
absence of the Mpemba effect. Conversely, for the Double Mpemba
effect, Na(Tinitial) exhibits non-monotonic behavior for a set of
parameters mentioned in the caption. For the Double Mpemba
effect, we observe that Na(Tinitial) −Na(Tbath) has two nodes at T2
and T4, which signifies rapid transitions to the cold distribution
occurring twice during the cooling process. In Fig. 4(b), we illus-
trate how the initial particle distributions result in the emergence of
the Double Mpemba effect, where the slower relaxation occurs due
to the necessity for particles at T1 and T3 to hop over the barrier in
order to match the occupation probability at Tbath.

B. Machine learning for Mpemba classification
Finally, we employ machine learning (ML) to study the

Mpemba effect, providing a faster and more efficient alternative to
computationally intensive eigenvector or cooling time calculations
across varying initial temperatures. By utilizing machine-learning
algorithms, we can effectively classify and predict different Mpemba
effect types based solely on observed data patterns. This allows us to
bypass the need for direct simulation or analytical calculations for
each new configuration.

1. Data generation and preprocessing
We first establish a comprehensive dataset based on the previ-

ously described theoretical model. The dataset includes the follow-
ing input parameters: the minimum position xmin, the maximum
position xmax, the bath temperature kBTbath, and the external force

F1. These parameters are systematically varied across a broad range
of values to capture the full spectrum of potential behavior for the
Mpemba effect,

{xmin, xmax, kBTbath, F1}→

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

0 if No Mpemba,

1 if Mpemba,

2 if Double Mpemba.

We vary xmin from −2.4ℓ to −0.125ℓ in intervals of 0.0625ℓ,
and xmax from 0.625ℓ to 2.4ℓ in the same interval. The bath tem-
perature kBTbath is varied from 5 × 10−5F0ℓ to 5 × 10−4F0ℓ in steps
of 5 × 10−5F0ℓ, and F1 varies from 5 × 10−5F0ℓ to 5 × 10−3F0ℓ
in steps of 5 × 10−5F0ℓ. This careful, systematic variation ensures
that the generated dataset, consisting of 780 000 data points, cov-
ers a diverse range of scenarios that represent the system’s full
complexity.

Before applying any machine-learning model, the dataset
undergoes standard preprocessing steps. Each feature is normalized
using a standard scalar to ensure uniform scaling. This normal-
ization step is crucial because the algorithms we employ, particu-
larly K-Nearest Neighbors (KNN)52 and Logistic Regression,53 rely
on consistent feature scaling for effective performance. Without
normalization, features with larger ranges could dominate others,
leading to skewed predictions.

2. Model selection
We evaluate four different machine-learning algorithms to

predict the occurrence and type of Mpemba effect: K-Nearest
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FIG. 4. (a) The occupation probability Na(T initial) as a function of temper-
ature T initial for a system exhibiting No Mpemba [Parameters: xmin = −0.5ℓ,
xmax = 0.5ℓ, F1 = 6 × 10−5F0ℓ] and Double Mpemba effect [Parameters:
xmin = −0.25ℓ, xmax = 0.75ℓ, F1 = 6 × 10−5F0ℓ]. The temperatures T1, T2, T3,
and T4 correspond to the temperatures mentioned in Fig. 2. (b) Initial probability
distribution P(x, t = 0) at temperatures T1, T2, T3, and T4 and kBTbath = 10−4F0ℓ
demonstrating that Na(Tbath) = Na(T2) < Na(T1) and Na(Tbath) = Na(T4)

> Na(T3).

Neighbors (KNN),52 Logistic Regression,53 Decision Tree,54 and
Random Forest.55

3. K-nearest neighbors (KNN)
KNN is a non-parametric algorithm that classifies new data

points based on the majority class among its closest neighbors in
the feature space. We employ the Euclidean distance metric and test
various values of k (the number of neighbors) to find the optimal
setting. The inherent simplicity of KNN, combined with the
benefits of feature scaling, makes it a valuable baseline model for
classification.

4. Logistic regression
We utilize a one-vs-rest (OvR) strategy for multiclass classifi-

cation, where each class is treated as a binary classification problem.
The model is trained using the LBFGS solver, which is efficient for
large datasets. Logistic regression serves as a linear model that can
quickly identify separable classes, making it suitable for distinguish-
ing between No Mpemba, Mpemba, and Double Mpemba effects
when the decision boundaries are relatively simple.

5. Decision tree
To capture nonlinear relationships between features, we use

a decision tree model with a maximum depth of 10. The decision
tree, built using the entropy criterion, can identify complex patterns
in the data by recursively partitioning the feature space. We limit
the depth to avoid overfitting while ensuring that the tree has suf-
ficient capacity to model the inherent complexity of the Mpemba
effect.

6. Random forest
As an ensemble method, Random Forest combines the predic-

tions of multiple decision trees (50 in this case) to improve overall
accuracy and robustness. By averaging the predictions from multi-
ple trees, Random Forest reduces the variance of individual decision
trees and enhances the model’s ability to generalize to unseen data.
This method is especially useful in our study due to the complex and
potentially overlapping parameter spaces of different Mpemba effect
types.

FIG. 5. (a) Overview of the methodology for predicting the Mpemba effect. The
process begins with generating data for building machine-learning models either
by theoretical or experimental/computational approaches. These data are used
to build and evaluate multiple ML models. The performance of these models is
assessed, and the best-performing model is selected. Finally, the selected physics-
assisted machine-learning model is used to predict the colloidal Mpemba effect. (b)
Calculated F1-score of different ML models in predicting No-Mpemba, Mpemba,
and Double Mpemba.
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7. Training and model evaluation
The dataset is split into a training set (70%) and a test set (30%)

to train the models and evaluate their performance on unseen data.
By using a test set that the models have not seen during training, we
can more accurately assess their generalization abilities.

After preprocessing, we evaluate the models using the F1 score,
a metric that balances precision and recall, providing a holistic
measure of the model’s performance. Precision refers to the
proportion of correct positive predictions, while recall measures
how many actual positives were correctly identified. This balance is
essential given the potential imbalances between the occurrence of
No Mpemba, Mpemba, and Double Mpemba cases in the dataset,

F1 Score = 2 ×
Precision × Recall
Precision + Recall

.

As illustrated in Fig. 5(a), all four models are evaluated based
on their F1 scores for each class (No Mpemba, Mpemba, Double
Mpemba). Figure 5(b) demonstrates that the Random Forest con-
sistently achieves the highest F1 scores across all Mpemba scenarios.
Its ensemble nature, which aggregates the results of multiple trees,
allows it to capture the complex relationships between features, lead-
ing to improved generalization and precise prediction compared to
the other models. In contrast, while the Decision Tree and KNN
models also perform well, they exhibit lower generalization due to
either overfitting or limited flexibility in partitioning the feature
space.

IV. CONCLUSIONS
We have investigated the influence of potential parameters and

bath temperature on the manifestation of different types of Mpemba
effects, demonstrating how these factors can fundamentally alter the
relaxation process and lead to the Double Mpemba effect, char-
acterized by a cooling trajectory with two minima. Furthermore,
we generalized a simple theoretical framework that quantitatively
aligns with the analysis based on the eigenfunction expansion of
the Fokker–Planck equation.33 In addition, we have integrated our
theoretical model with advanced machine-learning techniques to
enhance the predictability of this intriguing phenomenon.

Future research could explore the application of our findings
to other systems exhibiting the Mpemba effect. It would be partic-
ularly interesting to examine how varying bath temperatures and
different types of potentials affect the Mpemba effect in systems such
as active colloids and many-particle systems. This model can also
be used to study the Mpemba effect in quantum systems,23,24 offer-
ing insights into the relaxation dynamics and thermal behaviors of
complex quantum systems. A promising avenue for future research
is to deepen our investigation into the Kovacs effect56–60 using our
model, to uncover the intricate dynamics and memory effects that
influence the non-monotonic relaxation behavior in diverse physical
systems.

Our results can be tested in real-space experiments of colloidal
particles in an optical double-well potential.33,61 To study the effect
of different initial temperatures Tinitial, the external potential has to
be switched from one initial to another, which is proportional to the
initial one.
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APPENDIX A: CALCULATION OF EFFECTIVE
TEMPERATURE T effective (t ) FOR SYSTEMS
GENERATED AT DIFFERENT INITIAL TEMPERATURES

We associate a time-dependent effective temperature
Teffective(t) with the probability distribution function P(x, t)
through a local equilibrium definition as

∫

∞

−∞
dx U(x)P(x, t) = ∫

∞
−∞ dx U(x)e−β(t)U(x)

∫
∞
−∞ dx e−β(t)U(x) . (A1)

Here, β(t) = 1
kBTef f ective(t) represents the inverse temperature, and

U(x) is the potential energy function. The left-hand side of the equa-
tion represents the expectation value of the potential energy based
on the probability distribution P(x, t), while the right-hand side cor-
responds to the equilibrium expectation value of the potential energy
at temperature Teffective(t).

By solving this equation, we obtain a time-dependent tempera-
ture T(t) that characterizes the system’s instantaneous thermal state.
This approach provides valuable insights into the dynamic ther-
mal properties of the system as it evolves. In Fig. 6, we observe
two instances where the initially hotter system surpasses the ini-
tially cooler system, both under the same Tbath. Particles starting at
temperature T2, which is higher than T1, overtake those initially at
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FIG. 6. Effective temperature kBTeffective as a function of time for particles gen-
erated at different initial temperatures kBT1 = 0.001F0ℓ, kBT2 = 0.007 65F0ℓ,
kBT3 = 0.1F0ℓ, and kBT4 = 0.425F0ℓ taken to kBTbath = 10−4F0ℓ. Parameters
are the same as in Fig. 1.

T1. Similarly, particles at temperature T4, which is higher than T3,
surpass those initially at T3.

APPENDIX B: KULLBACK–LEIBLER DIVERGENCE

In this study, the Kullback–Leibler (KL) divergence62 is also
employed to quantify the differences in probability distributions,
providing insights into the system’s behavior. The KL divergence is
calculated using the following equation:

𝒟KL =
1
N

N

∑
i=1

Pi(t) ln(
Pi(t)
πi,bath

) (B1)

In Fig. 7, we present both distance measures for the Double
Mpemba effect based on the data shown in Fig. 2. This figure demon-
strates that the observation of the Mpemba effect is independent of
the chosen distance function, as the crossing of curves is consis-
tently observed regardless of the distance measure used. Although
the KL divergence provides quantitatively similar results to𝒟(t) dis-
tance measure, it can become infinite when probability bins contain
zero counts, necessitating the use of pseudo counts to regularize the
equilibrium distribution.

APPENDIX C: COMPARISON OF THEORETICAL
APPROACH AND NUMERICAL SIMULATIONS

Here, we present a comparison between the normalized cooling
time tsim

c derived from our numerical simulations and the normal-
ized cooling time tc calculated using Eq. (6). Figure 8(a) corresponds
to the parameter set that exhibits the Double Mpemba effect, while
Fig. 8(b) shows the single Mpemba effect. For the calculation of
tsim
c , we generated ten distributions for P(x, t), each based on 5000

independent simulation runs. In each run, the system is quenched
to the bath temperature Tbath, allowed to equilibrate, and then the
particle’s position is recorded. The data from these runs are used to
construct the final probability distributions P(x, t) for each of the
ten sets, reflecting the particle’s equilibrium state at Tbath. The cool-
ing time tsim

c is then measured by distance measure as mentioned in
Sec. II. These two plots demonstrate a good agreement between the
numerical simulations and the theoretical predictions.

FIG. 7. “Distance” (a) 𝒟(t) and (b) 𝒟KL(t) for temperatures kBT1 = 0.001F0ℓ, kBT2 = 0.007 65F0ℓ, kBT3 = 0.1F0ℓ, and kBT4 = 0.425F0ℓ taken to kBTbath = 10−4F0ℓ.
The parameters are the same as in Fig. 1.

FIG. 8. Cooling time normalized to [0, 1] by the maximum value of cooling time [max(tc) or max (tsim
c )] in the temperature range of 5 × 10−5F0ℓ to 0.5F0ℓ as a function of

initial temperature. The solid line shows the theoretical calculation and red data points are extracted from our simulation. (a) The bath temperature is kBTbath = 10−4F0ℓ. (b)
The bath temperature is kBTbath = 5 × 10−4. Parameters are the same as in Fig. 1.
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