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ABSTRACT
Non-equilibrium random fluctuations of a non-thermal nature are a defining feature of active mat-
ter. In this work, we study the collective excitations of active systems at high density, focusing on
a one-dimensional chain of elastically coupled inertial particles, where activity is modeled by an
Ornstein–Uhlenbeck process. The excitation spectrum reveals two types of fluctuations: thermally
excited phonons, analogous to those in passive crystals, and entropons, which are associated with
entropy production due to active forces. These fluctuations exhibit distinct properties: only entro-
pons generate spatial velocity correlations and violate the standard fluctuation-response relation.
We derive exact expressions for equal-time velocity and displacement correlations, as well as for the
structure factor, identifying the contributions fromboth phonons and entropons. Finally, we explore
the dynamical properties of these excitations through steady-state two-time correlations, such as
the intermediate scattering function and mean-square displacement. Both phonon and entropon
fluctuations are characterized by a long-wavelength overdamped regime and a short-wavelength
underdamped regime. In the large persistence case, entropons decay more slowly than phonons,
and activity generally suppresses the oscillations typical of the underdamped regime.
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1. Introduction

Active matter is an exciting branch of physics that is
highly relevant to biology since it helps to clarify the
motion and self-organisation of living organisms [1–3].
It comprises living systems, such as spermatozoa, cells
and tissues, and animals, but also artificial systems, such
as active colloids, microrobots, and active granular par-
ticles. These active units differ from equilibrium mat-
ter because they self-propel by converting energy from
the environment into persistent motion and are per-
manently out-of-equilibrium. Specifically, they maintain

CONTACT L. Caprini lorenzo.caprini@uniroma1.it Physics Department, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome, Italy

their velocity orientation for a characteristic, persistence
time, beyond which they randomly change direction.
Therefore, activity typically induces ballistic behaviour
at short or intermediate times and a diffusive behaviour
at long times. Remarkably, the mechanism providing the
energy necessary to sustain their movement acts indi-
vidually and independently on each of them, in contrast
with more conventional non-equilibrium systems dis-
placed from equilibrium globally by an external force or
forced at the boundaries, as in the case of shear driving or
thermal gradients. At a mesoscopic level, the persistence
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of the self-propulsion can be represented by a stochas-
tic force whose value at a given instant is correlated with
the values assumed in a previous time interval. Its explicit
form depends on the description adopted and includes
the Active Brownian particle (ABP) [4–8], the Active
Ornstein–Uhlenbeck particle [9–17] and Run & Tumble
models [18–21].

As a consequence of the active force memory, the
tools [22] developed for the study of Markov processes
and employed to describe the colloidal particle motion in
equilibrium with the environment, are usually not appli-
cable. Indeed, activity gives rise to important dynamical
differences such as the breaking of the Time Reversal
Symmetry (TRS) [23] and the lack of the detailed balance
condition [24,25]. This has important repercussions,
such as the absence of an equation of state [26] and ther-
modynamic potentials, but also non-vanishing entropy
production [27] and lack of a fluctuation-response rela-
tion [28,29]. Whereas the physics of a single active par-
ticle is pretty well understood, the active many-body
aspects are still the object of vivid interest because it is
challenging to understand the interplay between mem-
ory and interparticle interactions. Together, these two
mechanisms lead to the emergence of characteristic non-
equilibrium phenomena such as motility-induced phase
separation [30], flocking [31], and spontaneous velocity
alignment [32] with emergent spatial velocity correla-
tions [33]. Despite the simplicity of the models, analyt-
ical solutions are usually not accessible since the systems
are far from equilibrium. The majority of the investi-
gations have been conducted by numerical simulation
methods, whereas a minority used analytical approaches,
either based on the mean-field approximation of the
many body terms or obtained by using models amenable
to an exact mathematical treatment. In particular, the
AOUP model is very versatile and lends itself to analyt-
ical developments even in the case of interacting active
particles [34,35]. Understanding the role of strong cor-
relations in self-propelled systems is one of the most
important challenges in active matter. In this context,
one-dimensional systems comprising many active parti-
cles with repulsive interactions have proven to be a useful
testbed for the study of the behaviour of active matter
at high density. They offer a simple yet nontrivial model
solvable with reasonable theoretical effort and allow for
the direct comparison between numerical simulations
and analytical results.

In this paper, we consider the dynamics of an active
solid comprised of elastically coupled out-of-equilibrium
units [36,37]. The self-propulsions are described by
coloured noise forces and act together with white noise
thermal forces due to the presence of a low-viscosity sol-
vent. Compared to previous numerical studies [38–41],

Figure 1. An active one-dimensional chain. Illustration of a
chain of active particles in one dimension representing a one-
dimensional solid: each particle with velocity vi is placed at posi-
tion xi and subject to the self-propulsion f ai .

here we consider a homogeneous system at high den-
sity. The properties of an active solid are obtained by
approximating the complexmany-body interactionswith
a harmonic potential in the spirit of the Debye approach
used in solid state physics to derive the specific heat
due to the crystal vibrations [42]. To proceed with the
smallest amount of approximations, we consider the one-
dimensional version of the model (Figure 1) and focus
on various properties for which we develop analytical
predictions: we obtain the exact expressions of the cor-
relators of the displacement and velocity as a function of
frequency and wavevector. In particular, we discuss the
detailed structure of the correlators and relate it to the
excitations of the solid. The distance from the equilib-
rium is quantified by measuring the entropy production
rate (EPR) [43] of the system which in turn is con-
nected with the observed deviation from the fluctuation-
response relation. Compared to previous studies [44,45],
we also derive the expressions of the correlation functions
as a function of time and position and the static structure
factor and we analytically predict and discuss the inter-
mediate scattering function and the single-particle mean
square displacement.

The structure of the paper is the following: in section 2
we present the model of the 1D active chain, while in
section 3 we introduce the spectral representation of
the displacement and velocity correlation functions as
well as their relation with the entropy production. In
section 4 we derive the equal-time correlation function,
the static structure factor, and in section 5 we illus-
trate the behaviour of the two-time correlation functions.
Finally, in section 6, we draw the conclusions and future
perspectives of our work. To make the paper more read-
able but also self-contained, we relegated some mathe-
matical derivations in the appendices.

2. Inertial solid AOUPmodel

We study a one-dimensional active system consisting of
N pure-repulsive inertial self-propelled particles in one
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dimension. Particles have mass m and are subject to vis-
cous friction and thermal noise, dissipating and inject-
ing energy respectively. Experimentally, similar periodic
structures formed by microparticles immersed in a low-
viscosity solvent have been realised using holographic
optical tweezers [46]. In this paper, we include an active
force, modelled via Ornstein–Uhlenbeck process, acting
on each particle of the chain [47,48]. The following cou-
pled equations involving the positions, velocities, and
active forces, xn(t) and vn(t), f an (t), respectively, govern
the dynamics of the particles

ẋn(t) = vn(t) (1)

mv̇n(t) = −mγ vn(t) + √
2mγTξ tn(t) + Fn + f an (t).

(2)

The solvent exerts on the particles a drag force pro-
portional to their velocities with drag coefficient γ plus
a white noise random impulsive force due to the ther-
mal agitation proportional to ξ tn. This process has zero
average and time correlation δ(t − t′)δnn′ . For vanishing
activity, such that f an = 0, the resulting dynamics describe
an equilibrium system at a temperature T after imposing
the standard Fluctuation-Dissipation relation between
drag and stochastic noise strength. On the other hand, to
account for the persistence of the active force we assume
the following correlation function

〈f an (t)f an′(t′)〉 = (mγ v0)2δ
−|t−t′|/τ
nn′ , (3)

and a vanishing average, 〈f an (t)〉 = 0. The parameter τ

represents the persistence time and v0 the active speed.
For later use, we introduce a new parameter representing
the active temperature of a single self-propelled particle
in the absence of confinement:

Ta = mτγ v20. (4)

This temperature is related to the effective diffusion
coefficient induced by the activity of a single free self-
propelled particle. A well-known procedure to obtain
f a(t) consistent with equation (3) is to employ the fol-
lowing Ornstein–Uhlenbeck process:

ḟ an (t) = − 1
τ
f an (t) + mγ v0

√
2
τ

ξan (t), (5)

where ξan (t) is a second independent white noise with
the same characteristics as ξ tn(t). Notice that the coupling
between the velocity vn and the active force f an , expressed
by equations (1)–(2) and (3), is non-reciprocal (vn is
affected by f an , while f an is not affected by vn). This non-
reciprocity implies that the system is far from equilibrium
and, thus, produces entropy even at the single-particle
level [49].

Finally, the motion of any given particle is influenced
by the configuration and the motion of the other parti-
cles because the time-independent force Fn describes the
interaction between particles such that Fn = −∂xnUtot ,
where the total potential Utot = ∑N

n=1 U(|xn+1 − xn|) is
given by the sum of pairwise potentials. In recent numer-
ical work, we assumed thatU was a truncated and shifted
Lennard-Jones (LJ) potential, namely

U(rn) = 4ε

[(
d
rn

)12
−

(
d
rn

)6
]

+ ε, (6)

where rn = |xn+1 − xn| is the distance between neigh-
bouring monomers and ε is an energy scale and d is the
nominal particle diameter. At very high density, under
the action of the harsh repulsive forces, the particles tend
to form a regular one-dimensional lattice whose nodes
denoted by x0n are separated by a lattice distance x̄. To
proceed analytically, we have considered the following
approximate description of the model (1) consisting of
replacing the full non-linear potential by

Utot ≈ mω2
E

N∑
n

(xn+1 − xn − x̄)2, (7)

where ω2
E = U ′′(x̄)

m is the Einstein frequency of the solid.
The approximation in equation (7) assumes that the
excursion of each particle from its lattice node posi-
tion is not too large, and the interaction is limited
to first neighbours only. It is convenient to switch to
displacement coordinates and introduce un ≡ (xn − x0n)
and adopt periodic boundary conditions throughout the
paper. Since the resulting Langevin equation of the har-
monic chain (7) is linear and diagonalisable via Fourier
analysis we can determine all the one-time and two-time
correlation functions.

Using the double Fourier transform in time and space
(see Appendix 1 for their definition), we decouple the
dynamics for the displacement un into its normal modes:

−ω2ũq(ω) = −iωγ ũq(ω) − ω2
qũq(ω)

+
√
2Tγ

m
ξ̃ tq(ω) + f̃ aq (ω)

m
(8)

where the tilted variables are the time-Fourier transforms
of the variables featured in equations (1)–(5) and ξ̃ tq(ω) is
the Fourier transform of the white noise which satisfies
the relation 〈ξ̃ tq(ω)ξ̃ tq′(ω′)〉 = δ(ω + ω′)δqq′ . Moreover,
we have introduced the frequency ωq of the mode q as:

ω2
q = 4ω2

E sin
2(q/2). (9)

We note that, in the limit of N � 1, the wavevector q
becomes a continuous variable in the interval −π to
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π and the Fourier transform of the velocity is simply
given by ṽq(ω) = iωũq(ω). With the help of the response
function

Rûû(q,ω) = 1
−ω2 + ω2

q + iωγ
, (10)

Equation (8) can be rewritten in a more convenient
way as

ũq(ω) = Rûû(q,ω)

(√
2Tγ

m
ξ̃ tq(ω) + f̃ aq (ω)

m

)
, (11)

which is particularly suitable to calculate dynamical cor-
relation functions in Fourier space.

2.1. Entropy production of active particles

The degree of irreversibility of the process induced
by the active forces and its distance from thermody-
namic equilibrium is measured by the entropy produc-
tion rate [23,43,50–52]. The breaking of the time-reversal
symmetry in off-equilibrium systems implies that a par-
ticular sequence of mesoscopic states, as those described
by our Langevin equations, has a different probability
with respect to the time-reversed sequence. This asym-
metry is expressed through the Kullback–Leibler diver-
gence, i.e. the logarithm of the ratio between the proba-
bility weight, Pf , associated with a path forward in time
and the weight Pr for the time-reversed path:

Ṡ = lim
t→∞

1
t

〈
ln

(Pf
Pr

)〉
. (12)

The time derivative of the Kullback–Leibler divergence
defines the entropy production rate [14,43,53–57]. With
such a tool one easily discriminates between non-
equilibrium steady states (NESS) and equilibrium states,
where Ṡ = 0. Using the formalism of stochastic ther-
modynamics [43,58,59], as shown in Appendix 2, the
entropy production for the AOUP is proportional to the
power injected by the active forces, f an , on the particles,
and vanishes if the persistence time goes to zero and the
dynamics become reversible [60]. Hence, the EPR for the
AOUP turns out to be the ratio between the power dis-
sipated from the particle to the environment under the
form of heat and the temperature, T, of the surroundings
and reads [45,61,62]

Ṡ = 1
T

∑
n

〈f an (t)vn(t)〉. (13)

We remark that this result is obtained by assuming that
the active force f an (t) is even under time-reversal transfor-
mation. As discussed in Ref. [51], this choice implies that

the active force is generated by an internal mechanism,
such as internal motors, chemical reactions and so on. In
the present paper, we do not consider active forces that
are odd under time-reversal transformation correspond-
ing to passive tracers immersed in non-equilibrium,
active baths. In the next section, we study the fluctuations
of the active system and with the help of the EPR separate
their equilibrium from the non-equilibrium contribu-
tions. To achieve this goal, we consider the correlation
functions, the response function and the spectral entropy
production.

3. Dynamical correlations and entropy
production

To compute the correlation functions we consider the
average of the bilinear combinations of the displace-
ment and velocity variables. We define the following
displacement-displacement correlation in the (q,ω) rep-
resentation:

2πδ(ω + ω′)
total
uu (q,ω) = 〈ũq(ω)ũ−q(ω

′)〉, (14)

where the angular brackets symbolise the averages over
the realisations of both the thermal noise and active
forces. The corresponding time-correlation in the (q, t)
representation is obtained from equation (14) through
the Fourier transform:

Ctotal
uu (q, t) =

∫ ∞

−∞
dω
2π


total
uu (q,ω) e−iωt . (15)

The following Fourier spatial transform gives the spatio-
temporal correlation:

ctotaluu (n, t) =
∫ π

−π

dq
2π

Ctotal
uu (q, t) e−iqn. (16)

In the rest of the paper, the remaining correlation func-
tions involving the velocity and the partial contributions
to the total quantities satisfy relations analogous to equa-
tions (15)–(16).

By using the linearity of equation (8), we split the
displacement-displacement correlation function into the
sumof two parts, the phonon contribution and the entro-
pon [44,45] contribution, corresponding to the modes
excited by the thermal noise and the active force, respec-
tively:


total
uu (q,ω) = 


phonon
uu (q,ω) + 


entropon
uu (q,ω), (17)

where



phonon
uu (q,ω) = T

m
γ

(ω2 − ω2
q)

2 + ω2γ 2 (18)
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entropon
uu (q,ω) = Ta

m
1

1 + ω2τ 2
γ

(ω2 − ω2
q)

2 + ω2γ 2 .

(19)

We have identified the first term with the contribution
due to the (underdamped) phonons and the second with
the one due to the entropons, i.e. the excitations associ-
ated with the entropy production of the system. As dis-
cussed in our previous work [44,45], at the origin of such
terminology is the so-called Harada–Sasa relation [29]
involving three subjects: the displacement fluctuations

uu(q,ω), the imaginary part of the response function,
Rûû and spectral entropy production σ(q,ω).


total
uu (q,ω)

T
= − Im[Rûû(q,ω)]

mω
+ σ(q,ω)

mω2γ
. (20)

According to equation (20), in active systems, the
displacement correlation does not satisfy the usual
fluctuation-response relation between fluctuation and
response but is subject to an extended relation involving a
third observable, the spectral entropy production, as also
discussed in the framework of active field theories [63].
To derive equation (20) fromequation (17)we remark the
following equality

Ṡ =
∑

n〈vn(t)f an (t)〉
T

= mγ

T

∑
q

∫ ∞

−∞
dω
2π

ω2 

entropon
uu (q,ω), (21)

and consider the spectral representation of the EPR, i.e.
its decomposition in independent Fourier modes

Ṡ =
∑
q

∫ ∞

−∞
dω
2π

σ(q,ω). (22)

By comparing equations (21) and (22), we obtain the
equality

σ(q,ω) = mγω2 
̃
entropon
uu (q,ω)

T
. (23)

Considering the response function (10) we derive a sec-
ond relation



phonon
uu (q,ω)

T
= − Im[Rûû(q,ω)]

mω
(24)

and collecting these results we explicitly obtain the
Harada–Sasa relation (20). We remark that the spectral
entropy production, σ(q,ω), provides detailed informa-
tion onhow the variousmodes dissipate energy. In partic-
ular, the shorter the wavelength the smaller the entropy
production. For completeness and because of the appli-
cations in the rest of the paper, we establish a relation

between the velocity and the displacement correlation
functions, 
total

vv (q,ω) = ω2
total
uu (q,ω), and obtain the

following result:



entropon
uu (q,ω) = Ta

T



phonon
uu (q,ω) − τ 2 


entropon
vv (q,ω),

(25)

where



entropon
vv (q,ω) = Ta

m
ω2

1 + ω2τ 2
γ

(ω2 − ω2
q)

2 + ω2γ 2

= T
mγ

σ(q,ω). (26)

Such a formula links the presence of dynamical velocity
correlations to the irreversibility quantified by the spec-
tral entropy production, in contrast with the behaviour
of passive systems (corresponding to Ta = 0) where
both the velocity correlations and the EPR vanish. We
remark that the displacement spectrum, equation (17),
can be rewritten in terms of a frequency-dependent
effective temperature Teff (ω) by using the explicit
expressions for 


phonon
uu (q,ω) and 


entropon
uu (q,ω). This

approach has been previously used in the overdamped
regime [9,64–66]. In our case, Teff (ω) would simply be
the sum of two terms, a constant temperature and a
frequency-dependent temperature originating from the
activity. The first one is an equilibrium contribution and
is related to phonons while the second one is a non-
equilibrium contribution that generates entropy produc-
tion and, thus, is intrinsically related to entropons.

Returning to equation (17), we immediately see that
the character of the eigenmodes of the system strongly
depends on the value of the wavevector q. Modes with
larger values of ωq are more likely to be underdamped.
The crossover from overdamping to underdamping is
governed by the ratio of inertial time 1/γ and relaxation
time of the q-mode, 1/ωq. It moves towards underdamp-
ing by decreasing the drag coefficient or increasing the
strength of the potential. In fact, the poles of the correla-
tor 


phonon
uu (q,ω) in equation (18) lie on the imaginary

axis when ω2
q < γ 2/4. Instead, for ω2

q > γ/4 the poles
become complex developing a real part and producing
oscillations in the time-dependent correlation functions
as we shall illustrate in section 5.

The power spectrum of phonon fluctuations changes
from an overdamped Lorentzian spectrum with an uni-
modal shape to an underdamped bimodal shape with
the appearance of two symmetric resonance peaks. The
phonon correlation, 
phonon

uu (q,ω) displays a single peak
centred at ω = 0 if ω2

q is less than the critical value γ 2/2,
as shown in In Figure 2(a) (cyan curve) for q = π/50.
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Figure 2. Displacement dynamical correlations,
uu(ω, q), as a function of the frequencyω rescaled by Einstein’s frequencyωE . (a), (b):
S(ω, q) for a subcritical q-value, qσ = π/50. (c), (d): S(ω, q) for a supercritical q-value, qσ = π/3. In (a) and (c), the phonon contribu-
tion to 
uu(ω, q) is compared with the entropon one for τωE = 10. In (b) and (d), 
entropon

uu (ω, q), i.e. the entropon contributions to

uu(ω, q), are shown for different values of the reduced persistence time τωE , as reported in the external legends. Coloured curves are
obtained by plotting equation (18) (phonons) and equation (19) (entropons). The other parameters are: m/γωE = 5, T/(ω2

Ed
2) = 0.1

and v0/(ωEd) = 1.

By contrast, a double peak structure appears for ω2
q >

γ 2/2 as shown in Figure 2(c) (cyan curve) for q = π/3.

The side peaks occur at frequencies ω∗ = ±
√

ω2
q − γ 2

2
and are the remnant of the phonon peaks at frequen-
cies ±ωq of the corresponding frictionless system (γ =
0). We name them Brillouin peaks, bearing in mind
that only modes having wavevectors larger than qcrit =
2 arcsin

(
γ

23/2ωE

)
present this type of structure in the

spectrum.
We, now, shift our focus to the second contribu-

tion to the displacement fluctuation, the entropon,



entropon
uu (q,ω): the presence of the extra factor (1 +

ω2τ 2)−1, due to the active force correlation, depletes the

peaks at ω∗ = ±
√

ω2
q − γ 2

2 but produces an extra peak
at ω = 0 in the total displacement correlation function.
However, when ω2

q < γ 2/2 such an extra contribution
occurs in the same region ω ≈ 0 where also the phonon
central peak is located, as shown in Figure 2(a) (yel-
low curve). Therefore, it becomes visually appreciable
only above the critical value ω2

q > γ 2/2 as revealed in
as shown in Figure 2(c) (yellow curve). In conclusion, in
the case of phonons, the hardermodes, i.e. those having a
wavevector q above the critical value, qcrit , display a Bril-
louin double peak structure as a function ofω. Instead, in
the same range of parameters the supercritical entropons

show a triple-peak symmetric structure. As we shall show
in section 5, the multipeak structure in the frequency
representation of the correlation functions reflects the
presence of different time scales in the relaxation of the
fluctuations.

From equation (19), it is evident that the swim velocity
v0 trivially affects


entropon
uu (q,ω) by simply increasing the

amplitude of this correlation through the prefactor Ta,
identified as the active temperature. The main changes
due to activity occur by increasing the persistence time,
τ normalised with the Einstein frequency ωE. For over-
damped modes, such that ω2

q < γ 2/2, the persistence
increase induces a higher and narrow central peak as
shown in Figure 2(b). For underdampedmodes, such that
ω2
q > γ 2/2, the decrease of τ reduces the height of the

additional central peak, as revealed in Figure 2(d). This
reduction continues until this peak is suppressed in the
small persistence regime when active particles are effec-
tively passive and 


entropon
uu (q,ω) is only characterised by

the two lateral peaks.

4. Static correlations

We, now, consider the steady state of the system and
determine its stationary properties including the equal
time values of the displacement and velocity correlations
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and the static structure factor. To this purpose, we inte-
grate over the frequency the corresponding ω correla-
tions according to the prescription:

Ctotal
xx (q, t) =

∫ ∞

−∞
dω
2π

e−iωt 
total
xx (q,ω) (27)

where the subscript {xx} stands for {vv} or {uu}.

4.1. Spatial velocity correlations

Let us begin with the steady-state velocity correlation
function, i.e. corresponding to t = 0. One of the most
striking aspects of active systems is the presence of
correlations between the velocities of different parti-
cles which are completely absent at equilibrium [32,33].
Notwithstanding the absence of any alignment interac-
tion, the velocities of different particles become spa-
tially correlated over distances up to the correlation
length, λ, in other words, they form domains where
the velocities display a certain degree of coherence.
This phenomenon occurs at high density, in phase-
separated [32,67], solid [68,69] and liquid configura-
tions [33,70–72] as well as in active glasses [65,73–76]
and systems governed by feedback mechanisms [77]. In
the steady regime, the equal-time velocity correlation
function of each mode q is:

Ctotal
vv (q, 0) = T

m
+ Ta

m

[
1

1 + τγ + τ 2ω2
q

]
. (28)

Considering (9) and using the small q expansion of for-
mula (28) we obtain an Ornstein–Zernike expression for
the equal time q-correlation characterised by the non
dimensional correlation length, λ, (because expressed in
lattice units) from the relation

λ2 = ω2
Eτ

2

1 + τγ
. (29)

As already noticed [68] such a length is independent
of Ta, the intensity of the active force, whereas it is an
increasing function of the Einstein frequencyωE, the per-
sistence time τ and a decreasing function of the damping
time 1/γ . To characterise the size of the velocity domains,
we consider the equal-time spatial velocity correlation
functions, 〈vn(0)v0(0)〉, following a strategy similar to
Ref. [33].We go back to the real space description by inte-
grating the equal-time velocity q-correlation with respect
to q:

ctotalvv (n, 0) =
∫ π

−π

dq
2π

e−iqn Ctotal
vv (q, 0). (30)

If subject to pure thermal noise, the velocities of different
particles (i.e. n �= 0) are not correlated and we find:

T
m

∫ π

−π

dq
2π

e−iqn = T
m

δn,0. (31)

On the other hand, the entropon component, 

entropon
vv

(q,ω), proportional to the intensity of the active noise,
Ta, gives rise to spatial velocity correlations. For zero
separation n = 0, the equal-time space velocity-velocity
correlation reads:

ctotalvv (0, 0) = T
m

+
Ta
m

1 + τγ

1(
1 + 4λ2

)1/2 . (32)

It is worth noticing that the total entropy production rate
Ṡ is proportional to the amplitude of the velocity correla-
tions, centroponvv (0, 0), in virtue of equations (22) and (26).
If compared with the EPR of a single free particle, Ṡ1 =

Ta
m

1+τγ the EPR per particle of the one dimensional har-
monic solid is smaller by a factor (1 + 4λ2)−1/2, i.e. the
Einstein frequency reduces the EPR. For generic val-
ues of the separation n it is possible to obtain the exact
correlation function (see Appendix 3 for details):

centroponvv (n, 0) = centroponvv (0, 0)

[
1 + 2λ2 − √

1 + 4λ2

2λ2

]n

(33)

In the limit of λ � 1, expression (33) can be approxi-
mated as

centroponvv (n, 0) ≈ centroponvv (0, 0) exp
(
−n

λ

)
(34)

where the typical length, λ, associated with the exponen-
tial decay of the velocity correlation, represents the size of
the velocity domains. Such a an average size of scales as
∼ τ 1/2 and increases when the density increases, because
ωE increases as the lattice spacing, x̄, decreases. The the-
oretical expression for the spatial velocity correlations,
equation (33), is reported in Figure 3(a) together with the
exponential approximation, equation (34). In general, the
two expressions are in good agreement as the persistence
time (and thus λ) increases.

4.2. Equal-time displacement correlation

Following an integration procedure similar to the one
adopted in the analysis of the velocity correlations we
obtain the static displacement q-correlation

Cphonon
uu (q, 0) = T

m
1
ω2
q
, (35)
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Figure 3. Static correlations. (a): Spatial velocity correlation, centroponvv , due to entropons as a function of the dimensionless distance n.
centroponvv is normalised at one and is shown for different values of the persistence time τωE normalised by Einstein’s relation. Solid lines are
obtained by plotting the exact expression (33), while dashed lines are the results of the exponential approximation (34). (b): Static struc-
ture factor, S(q), as a function of wavevector q normalised with the particle diameter d, for several values of τωE . The other parameters
are:m/γωE = 5, T/(ω2

Ed
2) = 0.1 and v0/(ωEd) = 1.

Centropon
uu (q, 0) = Ta

m
1
ω2
q

1 + τγ

1 + τγ + ω2
qτ

2 . (36)

We express the steady-state displacement fluctuations of
a tagged particle as:

〈u2n〉 =
∫ π

2π/N

dq
π

Ctot
uu(q, 0)

=
∫ π

2π/N

dq
π

(
(T + Ta)

m
1
ω2
q
−Ta

m
τ 2

1 + τγ + τ 2ω2
q

)
.

(37)

Since ω2
q behaves as q2 for small q values the integral

diverges in the N → ∞ limit, we introduce the lower
limit 2π/N to discuss the dependence of the fluctuations
on the size N of the system. The integration yields the
following result:

〈u2n〉 = N
2π2

(T + Ta)

mω2
E

− τ 2
Ta

m
1

1 + τγ

1(
1 + 4λ2

)1/2 .
(38)

The presence in equation (38) of the last term, stemming
from the velocity correlations, shows that is not possible
to describe the active solid as a hotter crystal, i.e. in terms
of a renormalised temperature.

It is useful to express the mean square displacement in
terms of the MSD, a2, of a single particle in equilibrium
with a heat bath at temperatureT + Ta and in a confining
harmonic potential having the same Einstein frequency,
ω2
Ex

2/2, of the solid. The resulting displacement fluctua-
tion diverges linearly with the size N of the chain, with a
finite negative correction associated with the presence of
static velocity correlations:

〈u2n〉 = N
2π2

(T + Ta)

mω2
E

− τ 2centroponvv (0, 0). (39)

The difference between the displacement of particles sep-
arated by n lattice steps reads:

〈(un+m − um)2〉 = 2
∫ π

0

dq
π

(
1 − cos(nq)

)
Ctot
uu(q, 0).

(40)

Using the discrete translational invariance of the lattice
we find:

〈(un − u0)2〉 = (T + Ta)

mω2
E

∫ π

0

dq
π

1 − cos(nq)
1 − cos(q)

− 2τ 2
Ta

m

×
∫ π

0

dq
π

1 − cos(nq)
1 + τγ + 2τ 2ω2

E(1 − cos(q))
(41)

and for large values of n obtain the result:

〈(un − u0)2〉 ≈ n
(T + Ta)

mω2
E

− 2τ 2
Ta

m
1

1 + τγ

× 1(
1 + 4λ2

)1/2
(
1 − exp

(
−n

λ

))
.

(42)

Although un and u0 each have infinite fluctuations in the
N → ∞ limit, their difference has only finite fluctuations
roughly proportional to their separation showing that the
local deformations of the lattice are finite. However, when
the separation increases the fluctuation (42) behaves like
a constant times n plus an exponential correction stem-
ming from the velocity correlations.

4.3. Static structure factor

We now study the system in terms of one of its collective
variables, the density defined as n̂(x) = ∑

n δ(x − xn).
The average over thermal noise and active force of its
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Fourier transform is easily obtained by remarking that
the distribution of the displacement is Gaussian so that
the following average can be easily performed:

〈n̂q〉 =
∑
n

eiqn〈 eiqun〉 =
∑
n

eiqn e−q2〈u2n〉 = Nδq,0.

(43)

The last equality states that only the Fourier compo-
nent with q = 0 has a non-vanishing amplitude because
according to equation (39) the amplitude 〈u2n〉 increases
linearly with N. Thus the non-equilibrium steady den-
sity is uniform and in the limit N → ∞ the system is
liquid-like. However, the static density correlations still
show some structure and we use the equal-time structure
factor S(q) to analyse the existence of order in the chain.
S(q) is proportional to the scattering cross-section of an
incoming particle with pre-collisional wavevector ki and
final wavevector kf , such that q = kf − ki and is related
to the pair correlation g(x) by the relation:

S(q) = 1 + ρ

∫
dx (g(x) − 1) cos(qx) (44)

where ρ is the average number density. In the Born
approximation, S(q) is written as:

S(q) = 1
N

N∑
l,j=1

exp(−iq(l − j))
〈
exp(−iq(ul − uj))

〉
.

(45)

Since the displacement has a Gaussian distribution, by
using equation (42) and neglecting the second subleading
term due to velocity correlations, we have

S(q) = 1
N

N∑
l,j=1

exp
(−iq(l − j)

)

× exp
(

−q2|l − j| (T + Ta)

2mω2
E

)
, (46)

where the double sum runs over the indices of the parti-
cles. The double sum can be reduced to a single sum and
performed with the following result [78]:

S(q) = 1 + 2
N−1∑
n=1

(
1 − n

N

)
cos

(
qn

)

× exp
(

−q2n
(T + Ta)

2mω2
E

)

=
sinh

(
q2 (T+Ta)

2mω2
E

)
cosh

(
q2 (T+Ta)

2mω2
E

)
− cos(q)

. (47)

The structure factor S(q) displays local maxima at posi-
tions qG = 2kπ , where k is an integer number. The shape
of S(q) describes a structured liquid given the absence
of long-range translational order in one-dimensional sys-
tems. Their amplitudes decrease as (πk)−2 mω2

E
(T+Ta) as the

index k increases as shown in Figure 3(b). Near the Bragg
wavevectors qG = 2kπ with nonzero k, the peaks are
nearly Lorentzian of width 2πk2 (T+Ta)

mω2
E
, thus the larger

the intensity of the active force and the higher the tem-
perature the less pronounced their heights. Notice that
the forward scattering peak at q = 0 is absent since
equation (47) gives S(q → 0) = (T+Ta)

mω2
E

because to derive
formula (47) we performed the limit N → ∞. However,
the limits N → ∞ and q → 0 do not commute [79] and
the correct limit S(0) = N cannot be recovered.

5. Time-dependent fluctuations

Spontaneous fluctuations or perturbations due to exter-
nal agents almost always take place and therefore it is
important to know how dense systems of particles relax
toward a steady state. The relevant information is con-
tained in the two-time correlation functions which can
be determined by Fourier transforming their spectra
obtained in section 3. In this way, it is possible to calcu-
late the intermediate scattering function determining the
displacement-displacement relaxation of the q-mode. In
addition, we investigate the single-particle mean-square
displacement.

5.1. Intermediate scattering function

For t ≥ 0, by using the Fourier transform (27), we find
that the total velocity correlator as a function of the
wavevector q and time t is the sum of the phonon and
entropon contributions:

Cphonon
vv (q, t) = T

m
e−γ t/2 [C(q, t) − S(q, t)

]
(48)

Centropon
vv (q, t) = Ta

m
1

(1 + ω2
qτ

2)2 − γ 2τ 2

×
{
e−γ t/2

[
(1 + ω2

qτ
2) C(q, t)

− (1 − ω2
qτ

2)S(q, t)
]

− γ τ e−t/τ
}
(49)

where we have introduced the abbreviations:

C(q, t) ≡ θ

(
γ 2

4
− ω2

q

)
cosh(t

√
γ 2/4 − ω2

q )

+ θ(ω2
q − γ 2

4
) cos(t

√
ω2
q − γ 2/4) (50)
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S(q, t) ≡ θ

(
γ 2

4
− ω2

q

) γ
2√

γ 2/4 − ω2
q

× sinh(t
√

γ 2/4 − ω2
q )

+ θ(ω2
q − γ 2

4
)

γ
2√

ω2
q − γ 2/4

× sin(t
√

ω2
q − γ 2/4) (51)

and θ(x) is the Heaviside function. The behaviour of
the time-dependent correlation strongly depends on the
value of the wavevector q: one can distinguish two
types of regimes. For values of q below the threshold
qthres = 2 arcsin

(
γ
4ωE

)
the correlations are overdamped,

i.e. decay without oscillations (subcritical regime). By
contrast, for values of q above the threshold, an under-
damped oscillatory regime takes place (supercritical
regime). To observe the latter regime, it is necessary
that the friction coefficient γ is not too large com-
pared with the Einstein frequency, i.e. that the condition(

γ
4ωE

)
≤ 1 is fulfilled. Underdamped systems respond

with damped sinusoidal behaviour, whereas overdamped
responses have exponential responses and no oscillatory
behaviour. The dynamics depend on different time scales:
the persistence time τ , the viscous time γ −1 and the
wavevector dependent time ω−1

q . For small values of the
wavevector q in the subcritical regime, ω−1

q represents
the slowest time scale which determines the monotonic
decay of Cuu(q, t) as shown in Figure 4(a). By contrast,
above the threshold qthreshold in the supercritical regime,
the phonon correlation becomes underdamped, oscillates
and the amplitude decreases as the inertial time 1/γ , as
represented in Figure 4(c). In general (small q), the inter-
mediate scattering function of entropons is qualitatively
similar to that of phonons, i.e. it is characterised by a
monotonic behaviour which becomes slower only when
τ is the slower time scale, as shown in Figure 4(a). As
reported in Figure 4(b), the larger τ the slower the time
decay ofCentropon

vv (q, t). In the supercritical regime, entro-
pons not only decay slower but are also characterised by
the suppression of time oscillations typical of phonons
in this case. Figure 4(d) reveals that this effect is much
stronger as τ increases.

Let us remark that the entropon correlation func-
tion (49) unlike the phonon correlation (48) contains a
term which decays monotonically with the typical scale
of the persistence time, τ . As we have seen in section 3,
this term gives a non-dispersive central peak near ω = 0
in the frequency domain. Instead, the amplitude of the

displacement thermal fluctuations varies in time as:

Cphonon
uu (q, t) = T

m
1
ω2
q
e−γ t/2 (C(q, t) + S(q, t)

)
(52)

whereas, after a simple calculation, one can show that the
entropon modes vary as:

Centropon
uu (q, t) = Ta

m
1
ω2
q
e−γ t/2 (C(q, t) + S(q, t)

)
− τ 2Centropon

vv (q, t). (53)

Thus we may write the formula

Ctotal
uu (q, t) = T + Ta

T
Cphonon
uu (q, t) − τ 2Centropon

vv (q, t),

(54)

showing that the displacement fluctuations contain a first
term proportional to (T + Ta)/ω

2
q, which diverges as

q → 0, i.e. in the infinite ‘volume’ limit, plus a finite
negative correction proportional to the dynamic veloc-
ity correlations. Roughly speaking, in the time domain
the major difference between the phonon excitations and
the entropon excitations stems from the presence of a
the term e−t/τ in the latter (see equation (49)). More-
over, we remark that in the limit of vanishing potential,
the velocity correlation approaches one, corresponding to
free inertial AOUP. In addition, in this limit, the system
satisfies the following Green–Kubo relation [28,80]

lim
ωq→0

∫ ∞

0
dtCtotal

vv (q, t)

= T
m

∫ ∞

0
dt e−γ t

+ Ta

m
1

1 − γ 2τ 2

∫ ∞

0
dt

(
e−γ t − γ τ e−t/τ )

= T
mγ

+ Ta

mγ
= Dt + Da, (55)

which relates the spatial diffusion coefficient to the sta-
tionary velocity autocorrelation function. This is a well-
known result that can be interpreted as a consistency
check for the expression of Ctotal

uu (q, t). Indeed, the last
relation provides the value of the thermal diffusion coef-
ficient, Dt = T

mγ , and active diffusion coefficient, Da =
v20τ , of the model in the non-interacting limit which are
induced by Cphonon

uu (q, t) and Centropon
uu (q, t), respectively.

This further supports our idea of splitting the contribu-
tions of phonons and entropons.
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Figure 4. Intermediate scattering function, Cuu(q, t), as a function of time t rescaled by the Einstein’s frequency ωE . Each Cuu(q, t) is
normalised by its initial time value Cuu(q, 0). (a), (b): Cuu(q, t) for a subcritical q-value, qσ = π/50. (c), (d): Cuu(q, t) for a supercritical
q-value, qσ = π/3. In (a) and (c), the phonon contribution to Cuu(q, t) is compared with the entropon one for τωE = 10. In (b) and (d),
Centroponuu (q, t), i.e. the entropon contributions to Cuu(q, t) are shown for different values of the reduced persistence time τωE , as reported
in the external legends. Coloured curves are obtained by plotting equation (18) (phonons) and equation (19)(entropons). The other
parameters are:m/γωE = 5, T/(ω2

Ed
2) = 0.1 and v0/(ωEd) = 1.

5.2. Mean square displacement

To further investigate the steady-state dynamical prop-
erties of the system, we study the mean-square displace-
ment MSD(t) of a single particle as a function of time.
The MSD(t) is defined as

MSD(t) = 〈(un(t) − un(0))2〉
= 2(Ctotal

uu (0, 0) − Ctotal
uu (0, t)) . (56)

We study the two important limits, t → 0 and t → ∞.
To ascertain the short-time properties of the correlations
we first consider the following expansion:

〈uq(t)u−q(0)〉 =
∞∑
n=0

(−1)n
t2n

(2n)!
〈u(n)

q (0)u(n)
−q(0)〉

= 〈uq(t)u−q(0)〉 − t2

2
〈vq(0)v−q(0)〉+ . . .

(57)

and find that the MSD, for small values of the time argu-
ment, i.e. t/τ � 1 and γ τ � 1, evolves ballistically and
not diffusively, a characteristic of the inertial model:

MSD(t) ≈ t2
∫ π

0

dq
π

〈vq(0)v−q(0)〉 = cvv(0) t2

= t2
[
T
m

+
Ta
m

1 + τγ

1(
1 + λ2

)1/2
]
, (58)

where we used formula (32). Thus the short-time
behaviour ofσ 2

0 (t) is determined by the equal-time veloc-
ity correlation function. In the opposite limit, t → ∞,
we are not able to derive an exact formula for the
MSD, MSD(t), but we provide analytically its qualita-
tive behaviour. Since the velocity correlation function
Cvv(q, t) has its maximum at t = 0 for any value of q and
decays asymptotically to zero as t → ∞, we focus atten-
tion on the contribution stemming from the phonon-like
term, T+Ta

T Cphonon
uu (q, t) in equation (54):

MSD(t) ≈ 2
T + Ta

m

∫ π

0

dq
π

1
ω2
q

× [
1 − e−γ t/2 (C(q, t) + S(q, t)

)]
. (59)

Since the small q region, the one corresponding to over-
damped behaviour, gives the largest contribution to the
integral we expand the integrand as follows:

e−γ t/2 (C(q, t) + S(q, t)
) ≈ e−

ω2q
γ t (60)
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and for large t we obtain the following result (see
Appendix 4):

MSD(t) ≈ 2
T + Ta

m

∫ π

0

dq
π

1
ω2
q

[
1 − e−

ω2q
γ t

]

≈ 2a2√
π

ωE

(
t
γ

)1/2
. (61)

The fractional exponent 1/2 is identical to that of
single-file systems [81–86], i.e. systems of particles in
one dimension with excluded volume usually provided
by interactions diverging at the origin. This exponent
implies a subdiffusive motion for long times which is not
affected by the activity.

6. Conclusions

In this paper, we have studied how active forces influ-
ence the fluctuations of a system of interacting parti-
cles by considering a one-dimensional harmonic crystal
subject to inertial dynamics and thermal noise. Com-
pared with a similar study [87], here we consider an
underdamped system which allows us to calculate the
displacement-displacement correlations and to identify
two contributions: an equilibrium-like term assimilable
to the phonons of an ordinary equilibrium solid embed-
ded in a low-viscosity medium and a non-equilibrium
term accounting for the entropy production of the sys-
tem.Whereas the first contribution is associated with the
spatially uncorrelated velocity fluctuations of the parti-
cles, the second embodies the correlated behaviour of
their velocities. We have established a relation between
correlation and response functions, and entropy produc-
tion and we have shown that the last quantity is entirely
due to active fluctuations, i.e. the entropons. These results
cannot be obtained in a system of passive particles with a
spatial-dependent temperature profile [88] where trans-
lational invariance is broken. In addition, at variance
with previous work on chains consisting of active par-
ticles [89–91], here we have studied static and dynam-
ical correlations which we have analytically predicted.
Similar analyses have been performed in the context of
active polymers in the overdamped regime [92] where
long-time subdiffusive behaviour has been previously
observed for a tagged monomer in a Rouse chain [93].
Here, specifically, we have calculated the spatial depen-
dence of the one-body density and the static structure
factor, as well as the single-particle mean-square dis-
placement. In addition, we have found analytical expres-
sions for the intermediate scattering functions and single-
particle mean-square displacement.

The two-time correlations show the crossover from
overdamped dynamics to a regime of underdamped

propagating elastic waves as a function of the wavelength
of the fluctuation mode. While the former regime can be
observed also in systems with large viscosity, the second
regime can only be observed if the particles are massive
and subject to a low viscosity. These modes correspond
to propagating waves in the solid. We remark that since
the form of the correlation functions in the frequency
representation is independent of the lattice structure and
dimensionality, which only appear through the equilib-
riumdispersion relation, our results also hold for two and
three-dimensional solids. The same statement applies to
the time-dependent correlations at fixed q. On the con-
trary, the real space correlations show a strong depen-
dence on the dimensionality, and therefore the present
findings cannot be extrapolated to dimensions higher
than one.

The present work fills an existing gap by providing
a study of the highly non-trivial microscopic correla-
tions of a solid-like elastic active system. In general,
overdamped active particles exhibit behaviour similar to
that of inertial passive particles. However, the additional
memory source in inertial active matter causes these par-
ticles to undergo jerky dynamics, which are described
by a third-order differential equation [94]. Even if our
results have been derived in the case of AOUPs, we
remark that it holds also for ABPs. Indeed, the entropy
production rate is given by the steady-state correlation
function between particle velocity and active force. These
correlations coincide in ABPs and AOUPs while the dif-
ferences between these two models occurs starting from
higher order moments of the distribution [95]. Regard-
ing the future applications of active solid-state physics,
we believe that there will be important developments
in the field of bacterial biofilms which can be used to
probe the mechanical behaviour of elastic active matter.
In addition, while we have provided a suitable micro-
scopic theory, we believe that our work paves the way
towards the development of inertial active matter field
theories [94,96,97] capable of distinguishing between
entropon and phonon contributions.
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Appendix 1. Definition of Fourier transform and
spectral form of correlators

The time Fourier transform of the particle displacement, which
is identified by the hat symbol, satisfies the following relations:∫ ∞

−∞
dt eiωtun(t) = ûn(ω) (A1)

∫ ∞

−∞
dω
2π

e−iωt ûn(ω) = un(t). (A2)

Similar definitions hold for the other variables, whereas δ-
correlated white noises, such that 〈ξn(t)ξm(t′)〉 = δ(t − t′)δnm,
satisfy the following relation in Fourier space

〈ξ̂n(ω)ξ̂m(ω′)〉 =
∫ ∞

−∞
dt eiωt

∫ ∞

−∞
dt′ eiωt′ 〈ξn(t)ξm(t′)〉

=
∫ ∞

−∞
dt eiωt

∫ ∞

−∞
dt′ eiωt′ δ(t − t′)δnm

= 2π δnm δ(ω + ω′), (A3)

and
∫ ∞
−∞ dt eiωt〈ξn(t)ξm(0)〉 = δnm. For a coloured noise with

exponential memory, the time correlator reads:

Cff (t − t′) ≡ 〈f an (t)f am(t′)〉 = δnmF20 e
−|t−t′|/τ , (A4)

and its Fourier transform is


ff (ω) =
∫ ∞

−∞
dt eiωt〈f an (t)f am(0)〉 = 2F20

τ

1 + ω2τ 2
δnm.

(A5)

Now, our convention is that 
(ω) is the Fourier transform in
the frequency domain ω of the time correlator C(s). By con-
sidering the inverse relation Cff (s) = ∫ ∞

−∞
dω
2π e−iωs 
ff (ω), we

obtain the following relation between the average
〈f̂ an (ω)f̂ am(−ω)〉 and 
ff (ω):

〈f̂ an (ω)f̂ am(ω′)〉 = 
ff (ω)2πδ(ω + ω′). (A6)

Appendix 2. Trajectory calculation of the
entropy production rate of themedium

For completeness, we derive the formula for the entropy pro-
duction rate used in the main text, i.e. equation (13). By using
equations (1)–(5), we can express the noise of the n-particles as
a function of the system variables:

ξn = 1√
2Tγ

(
mv̇n + mγ vn − Fn − f an

)
. (A7)

The white noise ξn(t) at time t is governed by a Gaussian
probability distribution with unit variance. Since white noises
are δ-correlated, the probability distributions of ξn at different

times are independent. As a consequence, the probability of
noise path {ξn}tfti from time ti to the final time tf is given by

P[{ξn}tfti ] = N exp
(

−1
2

∫ tf

ti
dt ξ 2n (t)

)
, (A8)

where N is a normalisation constant. Substituting
equation (A7) into equation (A8) gives the path weight for a
trajectory vn in the forward dynamics between an initial state
at time ti and a final state at time tf

PF[{vn}tfti ]

= N ′ exp
(

− 1
4Tγ

∫ tf

ti
dt

(
mv̇n + mγ vn − Fn − f ai

)2) ,

(A9)

where N ′ is another normalizer that also contains the Jaco-
bian of the transformation from noise variables to dynami-
cal variables (position, velocity and activity). From the path-
probability probability, we can calculate the entropy production
of the medium by applying its definition

Sm = log
(PF

PR

)
, (A10)

where PF is the probability of the forward trajectory of all the
particles and PR is the corresponding time-reversed probabil-
ity. Specifically, PF reads:

PF ∝
N∏
n

exp
(

− 1
4Tγ

∫ tf

ti
dt

(
mv̇n + mγ vn − Fn − f an

)2),
(A11)

because the noise trajectories of different particles are inde-
pendent. On the other hand, the weight for the reverse path
is found by applying the time-reversal transformation. This
means transforming time as t → −t, the particle position as
xn → xn, and, consequently, the particle velocity as vn → −vn.
Motivated by previous studies [44,61,98–100], we assume that
the activity f an is even under time-reversal transformation, such
that f an → f an . With this choice, even a potential-free AOUP
particle in the presence of a thermal bath produces entropy,
as expected in non-equilibrium systems. Therefore, by set-
ting vn → −vn in equation (A11), we can easily calculate the
probability of the reversed path PR as

PR ∝
N∏
n

exp
(

− 1
4Tγ

∫ tf

ti
dt

(
mv̇n − mγ vn − Fn − f an

)2).
(A12)

We can therefore construct the ratio of the forward and back-
ward path weights that carry us from the initial to the final state
as:

PF

PR
=

N∏
n

exp
(

− 1
4Tγ

∫ tf

ti
dt

(
mv̇n + mγ vn − Fn − f an

)2)

× exp
(

1
4Tγ

∫ tf

ti
dt

(
mv̇n − mγ vn − Fn − f an

)2).
(A13)

https://doi.org/10.1103/PhysRevLett.119.158002
https://doi.org/10.1103/PhysRevE.100.050603
https://doi.org/10.1103/PhysRevE.103.012613
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With this definition, we have:

Sm =
N∑
n

σm
n , (A14)

where σm
n is the entropy production of the medium of the n-

particle, that reads

σm
n = − 1

Tγ

∫ tf

t0
dt

(
mv̇n − Fn − f an

)
γ vn

= − 1
T

∫ tf

t0
dt

(
m

d
dt

v2n
2

+ vn∇xnU − vnf an

)
. (A15)

By summing over n, we have

Sm = 1
T

(
Kt0 − Ktf

)
− 1

T

∑
n

∫ tf

t0
dtvn

(∇xnU − f an
)
,

(A16)

where Ktα = ∑
n mv2n/2 is the total kinetic energy calculated

at time tα . If the force is an internal force we use
1
T

∑
nn′

〈 vn∇xnU(xn − xn′)〉

= 1
2T

∑
nn′

〈 [vn∇xnU(xn − xn′) + vn∇xn′U(xn − xn′)]〉

= 1
2T

d
dt

∑
nn′

U(xn − xn′) = 1
T
Utot . (A17)

Thus, we may rewrite

Sm = 1
T

(
Kt0 − Ktf

)
+ 1

T

(
Ut0 − Utf

)

+ 1
T

∑
n

∫ tf

t0
dt〈vnf an 〉. (A18)

If we consider the entropy production rate, we may divide the
previous result by (tf − ti) and observe that the first two terms
are boundary terms irrelevant for large times, tf − ti. Fromhere
we obtain the expression for the entropy production rate of the
medium

Ṡm = 1
T

∑
n

〈vnf an 〉, (A19)

which corresponds to equation (13).

Appendix 3. Integrals over wavevectors

The first integral in equation (37) can be computed as follows:

Q0 = (T + Ta)

m

∫ 2π

2π/N

dq
2π

1
ω2
q

= (T + Ta)

mω2
E

∫ 2π

2π/N

dq
2π

1
4 sin2(q/2)

≈ (T + Ta)

mω2
E

N
2π2 (A20)

We consider now the first integral in equation (41)

Qn = (T + Ta)

mω2
E

∫ 2π

0

dq
2π

1 − cos(nq)
(1 − cos(q))

= 4
(T + Ta)

mω2
E

∫ π/2

0

dx
2π

sin2(nx)
sin2(x)

≈ n
∫ nπ/2

0
dy

sin2(y)
y2

. (A21)

Using the tabulated integral:∫ ∞

0

sin2(αx)
x2

= α
π

2
(A22)

we find

Qn ≈ (T + Ta)

mω2
E

n. (A23)

The second integral in the expression for the single-particle
mean-square displacement, i.e. equation (41) reads:

In = Ta

m
τ 2

∫ π

0

dq
π

1 − cos(nq)
1 + τγ + τ 2ω2

q

= Ta

m
τ 2

1
1 + τγ

∫ π

0

× dq
π

1 − cos(nq)
1 + 2λ2(1 − cos(q))

(A24)

and can be evaluated with the help of the tabulated result:∫ π

0
dx

cos(nx)
1 + β cos(x)

= π√
1 − β2

(
1 − √

1 − β2

|β|

)n

(A25)

with

β = − 2λ2

1 + 2λ2
(A26)

and n ≥ 0. By using the result of this integral, we obtain:

In = 2τ 2
Ta

m
1

1 + τγ

1(
1 + 4λ2

)1/2
×

[
1 −

(
1 + 2λ2 − √

1 + 4λ2

2λ2

)n]
. (A27)

By considering the following approximation:(
1 + 2λ2 − √

1 + 4λ2

2λ2

)n

≈ exp
(
n ln(1 − 1

λ
)

)

≈ exp
(
−n

λ

)
, (A28)

we finally obtain

〈(un − u0)2〉 = na2 − 2τ 2
Ta

m
1

1 + τγ

1(
1 + 4λ2

)1/2
×

(
1 − exp

(
−n

λ

))
, (A29)

which coincides with the result of equation (42).

Appendix 4. Derivation of equation (61)

Within the overdamped approximation valid for modes having
q < qthres we write:

MSD(t) = T + Ta

mπ

∫ π

−π
dq

1
2ω2

E(1 − cos(q))
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×
(
1 − e−2ω2

E(1−cos(q))t/γ
)
. (A30)

To perform the integral, we consider its time derivative, which
reads:

d
dt
MSD(t) = T + Ta

mγπ
e−(2ω2

E/γ )t
∫ π

−π
dq e2

ω2E
γ cos(q)t

= 2
T + Ta

mγ
e−(2ω2

E/γ )tI0
(
2ω2

E
γ

t
)

(A31)

where I0(x) is the modified Bessel function of the first kind
defined as

I0(z) = 1
π

∫ π

0
dθ ez cos θ . (A32)

By taking the asymptotic expansion for large z, we can write

I0
(
2ω2

E
γ

t
)

= e(2ω
2
E/γ )t√

2π(2ω2
E/γ )t

(
1 + 1

8
1

(2ω2
E/γ )t

+ . . .

)
.

(A33)

In the opposite limit of small z, the modified Bessel function
can be approximated as I0(z) ≈ (1 + z/4 + . . .), and we obtain

d
dt
MSD(t) ≈ T + Ta

mωE
√

πγ
t−1/2. (A34)

Thus integratingwith the initial condition σ 2
0 (0) = 0,we finally

obtain

MSD(t) ≈ 2√
π

T + Ta

mωE
√

γ
t1/2, (A35)

which corresponds to equation (61).
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