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Abstract

We study analytically the dynamics of an anisotropic particle subjected to different stochastic
resetting schemes in two dimensions. The Brownian motion of shape-asymmetric particles in
two dimensions results in anisotropic diffusion at short times, while the late-time transport is
isotropic due to rotational diffusion. We show that the presence of orientational resetting
promotes the anisotropy to late times. When the spatial and orientational degrees of freedom are
reset, we find that a non-trivial spatial probability distribution emerges in the steady state that is
determined by the initial orientation, particle asymmetry and the resetting rate. When only
spatial degrees of freedom are reset while the orientational degree of freedom is allowed to
evolve freely, the steady state is independent of the particle asymmetry. When only particle
orientation is reset, the late-time probability density is given by a Gaussian with an effective
diffusion tensor, including off-diagonal terms, determined by the resetting rate. Generally, the
coupling between the translational and rotational degrees of freedom, when combined with
stochastic resetting, gives rise to unique behavior at late times not present in the case of
symmetric particles. Considering recent developments in experimental implementations of
resetting, our results can be useful for the control of asymmetric colloids, for example in
self-assembly processes.

Keywords: stochastic resetting, asymmetric colloid, Brownian motion

1. Introduction

A wide variety of processes in physics, chemistry, and bio-
logy are comprised of diffusing particles that are highly aniso-
tropic in shape. Prominent examples include rod-like bacteria
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or viruses [1–4], nematic macromolecules [5, 6], and shape-
asymmetric colloids [7–12]. There are several recent research
avenues in soft condensed matter, where asymmetric colloidal
micro- and nano-particles play a prominent role. In colloidal
self-assembly, control of shape-asymmetric particles is cru-
cial for the assembly of materials with novel functions and
properties [13–16]. In nanomedicine, how to externally con-
trol the dynamics of an asymmetric colloid moving inside the
human body is a central question [17].
The diffusive motion of shape-asymmetric objects is a topic
with a long history, dating back to the work of Perrin almost
a century ago [18–20]. The translational motion of these
anisotropic particles can be quite different from those of
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spherical particles. When left to diffusive, the anisotropic
particles show a crossover from short-time anisotropic diffu-
sion, due to the coupling of rotational and translational motion,
to effective isotropic diffusion at late times [21]. The cros-
sover between these regimes depends on the timescale set by
the rotational diffusion coefficient, which determines the dir-
ectional memory along the particle’s long axis. Furthermore,
the transient behavior of an anisotropic particle is longer-lived
in two dimensions when compared to the three-dimensional
case. This suggests that the transient behavior may modulate
the reaction rate of diffusion-limited reactions in intracellular
membranes, where reaction time is frequently of the order of
microseconds and the environment is dimensionally restricted
[22, 23]. Experimental methods are also available for synthes-
izing and characterizing the dynamics of ellipsoidal colloids
[21]. Experimentally, it has been shown that the transition from
anisotropic to isotropic diffusion in two dimensions occurs
over a period of a few seconds for a free micrometer-sized
ellipsoidal particle [24].

The Brownian motion of an anisotropic particle has been
studied in many situations over the years, including dynam-
ics in confinement and external potentials [24, 25], first pas-
sage analysis [26, 27], active matter [28–30] and stochastic
thermodynamics [31]. So far, to the best of our knowledge,
there has been little or no work on anisotropic particles sub-
jected to stochastic resetting. Stochastic resetting is a process
whereby a system’s state is brought back to its initial con-
dition at a constant rate [32–34]. A wide range of intriguing
phenomena results from this simple rule of intermittent inter-
ruption, for example, anomalous relaxation properties [35, 36]
and non-trivial steady states resulting from the confining effect
of resetting [37, 38]. Over recent years, a myriad of aspects
has been investigated, including target search processes under
resets [39–55], stochastic thermodynamics [56–65], and act-
ivematter [66–71]. Recently, the effects of resetting in systems
with multiple coupled degrees of freedom have been studied.
In particular, the case where an observed degree of freedom
experiences indirect effects of resets due to a coupling to a
resetting variable has been investigated [72, 73].
In the majority of past studies, resetting is applied to sym-
metric or point-like particles. Here, we extend past studies
by studying the effect of various resetting schemes applied
to a shape-asymmetric Brownian particle. In particular, we
consider the case of a Brownian anisotropic particle, where
a rotational-translational coupling is present which separates
the dynamics from the symmetric counterpart. We study the
dynamics of a Brownian anisotropic particle under various
resetting schemes, all of which may be implemented experi-
mentally. Resetting of the translational degrees of freedom can
be achieved by optical tweezers [40, 45, 65, 74], while reset-
ting of the particle’s orientation can be performed using tech-
niques developed for magnetic anisotropic colloid assembly
[75]. We seek to understand the dynamical consequences of
the combined effect of particle asymmetry and resetting in
two dimensions, which can be characterized by moments and

marginal distributions, available, for example, in colloidal
experiments using particle tracking.
This paper is structured as follows. Section 2 introduced
the necessary background theory, including the Brownian
motion of anisotropic particles in two dimensions, as well as
the renewal approach to stochastic resetting when multiple
degrees of freedom is present. We then proceed to invest-
igate the dynamical and stationary properties under various
resetting schemes, namely complete resetting of all degrees
of freedom, translational resetting, and orientational resetting
in sections 3–5 respectively. Section 6 offer a concluding
discussion.

2. General theory

2.1. Diffusion of an anisotropic particle

Here we consider the dynamics of an anisotropic free
Brownian particle in two dimensions with mobilities Γ|| and
Γ⊥ along the longer and the shorter axes of the particle, as
shown in figure 1(a) respectively. Additionally, the motion of
the particle is subjected to rotational diffusion, characterized
by the mobility Γθ. The translational and rotational diffus-
ivities are defined through Einstein-Smoluchowski relations
D|| = kBTΓ|| and D⊥ = kBTΓ⊥, and Dθ = kBTΓθ, where T is
the temperature of the bath. The particle at any given time t
can be described by the position vector r⃗(t) of its center of
mass, which can be decomposed as (δx̃, δỹ) in the body frame
and (δx, δy) in the laboratory frame. The angle between the lab
and body frames is denoted as θ(t), which evolves diffusively
as

∂θ

∂t
=
√
2kBTΓθη̃θ (t) . (1)

The translational motions of the anisotropic particle are
decoupled in the body frame, and are described by the
Langevin equations,

∂x̃
∂t

=
√

2kBTΓ∥η̃x (t) ;
∂ỹ
∂t

=
√
2kBTΓ⊥η̃y (t) . (2)

Without any loss of generality, we assume that the longer and
the shorter axes of the particle are along the x̃ and ỹ directions
of the body frame respectively. The translational and rotational
noise terms η̃θ(t), η̃x(t) and η̃y(t) in equations (1) and (2) are
assumed to be Gaussian and characterized by the following
mean and variances

⟨η̃i (t)⟩= 0, and ⟨η̃i (t) η̃j (t ′)⟩= δijδ (t− t ′) (3)

The displacements in the lab and the body frames are related
by the following equations,

δx= cosθδx̃− sinθδỹ,

δy= cosθδỹ+ sinθδx̃. (4)

2
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Dividing the equation (4) by δt, taking the limit δt→ 0, and
substituting the translational velocities in the body frame from
equation (2), we get the equations of motion in the lab frame
as follows

∂x
∂t

= ξx (t) ;
∂y
∂t

= ξy (t) (5)

The random variables ξi have zero mean and the correlations
at fixed θ(t) are given by

⟨ξi (t)ξj (t ′)⟩= 2kBTΓij [θ (t)]δ (t− t ′) , (6)

where Γij [θ(t)] = Γ̄
2 +

∆Γ
2

[
cos2θ(t) sin2θ(t)
sin2θ(t) −cos2θ(t)

]
with

Γ̄ =
Γ||+Γ⊥

2 and∆Γ=
Γ||−Γ⊥

2 .
Integrating equation (5) with respect to time for x direction,
one obtains

x(t) =
ˆ t

0
dt ′ξx (t

′)+ x0. (7)

The rotational degree of freedom evolves on the unit circle fol-
lowing an ordinary Brownian that is independent of the trans-
lational degrees of freedom. Hence, the second moment of the
particle, conditional on an initial orientation angle θ0, can be
explicitly calculated from equation (7) as

⟨x2 (t) |θ0⟩=
ˆ t

0
dt ′
ˆ t

0
dt ′ ′⟨ξi (t ′)ξi (t ′ ′)⟩

= 2kBT
ˆ t

0
dt ′
ˆ t

0
dt ′ ′⟨Γij [θ (t ′)]⟩ηθ

δ (t ′ − t ′ ′)

= 2kBT
ˆ t

0
dt ′

[
Γ̄ +

∆Γ

2
⟨cosθ (t ′) |θ0⟩

]
= 2kBT

[
Γ̄t+

∆Γ

2
cos2θ0

(
1− e−4Dθ t

4Dθ

)]
(8)

Here, and throughout, we assume the particle is initially at the
origin x0 = y0 = 0. Above, we used the following identity

⟨cos2θ (t) |θ0⟩= Re⟨ei2θ|θ0⟩= Re

ˆ dθei2θ
e−

(θ−θ0)
2

4Dθ t

√
4πDθt


= cos(2θ0) e

−4Dθ t (9)

Similarly, one can explicitly calculate the second moment for
y(t) direction

⟨y2 (t) |θ0⟩= 2kBT

[
Γ̄t− ∆Γ

2
cos2θ0

(
1− e−4Dθ t

4Dθ

)]
(10)

The first term in equations (8) and (10) is attributed to the
diffusion of the center-of-mass and the second term res-
ults from the displacement of the particle due to the ori-
entational fluctuations. At late times much larger than the
rotational timescale t≫ D−1

θ , the diffusion is isotropic with

⟨x2(t)⟩= ⟨y2(t)⟩= 2kBT Γ̄t. At short timescales, however, we
have the first-order expansions

⟨x2 (t) |θ0⟩= 2kBT

(
Γ̄ +

∆Γ

2
cos(2θ0)

)
t+O

(
t2
)

(11)

⟨y2 (t) |θ0⟩= 2kBT

(
Γ̄− ∆Γ

2
cos(2θ0)

)
t+O

(
t2
)

(12)

where we see that the shape asymmetry gives rise to aniso-
tropic diffusion at early times, depending on the particle’s
initial orientation θ0. It is interesting to compare the mean
squared displacements along the x and y directions. The ratio

of the variances is given by K= ⟨x2(t)|θ0⟩
⟨y2(t)|θ0⟩ =

(Γ̄+∆Γ
2 cos(2θ0))

(Γ̄−∆Γ
2 cos(2θ0))

.

The anisotropy in diffusion also generates non-zero cross-
correlation between x and y through their mutual coupling to
the orientation,

⟨x(t)y(t) |θ0⟩= 2kBT

[
∆Γ

2
sin2θ0

(
1− e−4Dθ t

4Dθ

)]
. (13)

It is evident that the correlation between x and y in
equation (13) becomes constant at t→∞ due to the decor-
relation between θ0 and θ(t) after a timescale proportional to
D−1

θ .

2.2. Renewal approach to resetting

The anisotropic particle in two dimensions can be described
by its center-of-mass positions, (x, y) as well as an orientation
angle θ. We collect these three degrees of freedom into a single
phase space variable X≡ (x,y,θ). Upon stochastic resetting,
we must prescribe a rule for how all phase space variables are
reset. In general, we assume that upon a reset event the phase
space point X(t) resets to

X(t)−→ XR (X0,X(t)) (14)

where the resetting location XR(X0,X(t)) can be a mix of the
coordinates X(t) before the reset and the initial coordinates X0

depending on the type of resetting considered. For Poissonian
resets, i.e. the waiting time between resets follows an expo-
nential distribution with rate r, the full phase space propagator
Pr(X, t|X0) can be expressed in terms of a renewal equation

Pr (X, t|X0) = e−rtP0 (X, t|X0)+ r
ˆ t

0
dτe−rτ

×
ˆ

dX ′Pr (X
′, t− τ |X0)P0 (X, τ |XR (X0,X

′)) .

(15)

The equation (15) is based on the renewal property of reset-
ting processes, with simpler single-variable versions having
been widely utilized in previous studies [34]. In this work, we
employ a renewal equation tailored for multivariable systems,
where resetting is applied to only a subset of the states. In the
above, P0(X, t|X0) is the propagator of the underlying system

3
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Figure 1. (a) Anisotropic particle with three mobilities; parallel to body axis Γ||, perpendicular to the body axis Γ⊥, and a rotational
motility ΓR. (b) Under complete resetting, all degrees of freedom are reset to their initial conditions. (c) For translational resets, only the
particle’s center-of-mass position is reset. (d) Under orientational resetting, the particle orientation angle is reset, while the center-of-mass
positions remain unchanged.

in the absence of resetting. The first term in equation (15) cor-
responds to trajectories where no resets have occurred up to
time t, which happens with probability e−rt. The second term
takes into account trajectories where one or more resetting
events takes place. The particle propagates up to the time of
the last resetting, t− τ , with the propagator Pr(X ′, t− τ |X0),
residing in a random state X′ at this instance. After the sub-
sequent reset X ′ → XR(X0,X ′) the particle propagates from
this point to the final state without further resets, with propag-
ator P0(X, τ |XR(X0,X ′)).

While an exact solution of the propagator in equation (15)
is often hard to find, it provides a powerful tool to calculate
the expected value of an observable O(X) [71]. Multiplying
both sides of equation (15) withO(X) and integrating over all
possible X, we find

⟨O (X, t) |X0⟩r = e−rt⟨O (X, t) |X0⟩0 + r
ˆ t

0
dτe−rτ

ˆ
dX ′Pr

× (X ′, t− τ |X0)⟨O (X, τ) |XR (X0,X
′)⟩0

(16)

In the following, we use this approach to calculate observables
under various resetting protocols for the anisotropic particle.

Stochastic resetting can be approached through two equi-
valent frameworks: the renewal equation approach, which
we utilize here, and the Fokker–Planck equation approach.
To validate the consistency of these approaches, we derive
the last renewal equation for partial resetting directly from
the Fokker–Planck formulation. The detailed derivation is
provided in the appendix. We consider the following reset-
ting protocols by changing the functional form of the resetting
point in phase space XR(X0,X(t)):

i) Complete resetting: all phase space variables are reset
to their initial values XR(X0,X ′(t)) = X0, shown in the
schematic in figure 1(b).

ii) Translational resetting: only the spatial coordinates
are reset, i.e. XR(X0,X ′(t)) = (x0,y0,θ ′(t)), shown in the
schematic in figure 1(c).

iii) Orientational resetting: only the orientation is reset
XR(X0,X ′(t)) = (x ′(t),y ′(t),θ0), shown in the schematic
in figure 1(d).

In the following, we consider these cases separately. In par-
ticular, we are interested in the reduced dynamics of one of the
spatial coordinates, for which reduced renewal equations are
derived in each case.

3. Complete resetting

For complete resetting, the propagator Pr(X, t|X0) in the pres-
ence of Poissonian resetting can be written through the last
renewal equation

Pr (X, t|X0) = e−rtP0 (X, t|X0)+ r
ˆ t

0
dτe−rτ

×
ˆ

dX0P(X0)P0 (X, τ |X0) . (17)

Here we have assumed that the initial condition X0 is drawn
from a distribution P(X0). The last renewal equation can pre-
dict the steady state as

Pst (X, t|X0) = r
ˆ ∞

0
dτe−rτ

ˆ
dX0P(X0)P(X, τ |X0)

= r
ˆ
dX0P(X0) P̃0 (X,r|X0) (18)

Here P̃0(X,r|X0) is the Laplace transform of P0(X, τ |X0).
Using the method outlined above to derive equation (16),

the renewal equation for the moments can similarly be
obtained from the last renewal equation, equation (17)

⟨Xn (t)⟩r = e−rt⟨Xn (t)⟩0 + r
ˆ t

0
dτe−rτ

ˆ
dX0P(X0)⟨Xn (τ)⟩0.

(19)

For our case, X represents three dynamical variables (x,y,θ).
For a fixed initial state X0 = (0,0,θ0), we have

Pr (x,y,θ, t|0,0,θ0) = e−rtP0 (x,y,θ, t|0,0,θ0)

+ r
ˆ t

0
dτe−rτP0 (x,y,θ,τ |0,0,θ0) .

(20)

4
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The effect of resetting on the variable x can be obtained by
integrating over y and θ in the above renewal equation:

Pr (x, t|0,θ0) = e−rtP0 (x, t|0,θ0)+ r
ˆ t

0
dτe−rτP0 (x, τ |0,θ0) .

(21)

The corresponding moments for x in that case would be

⟨xn (t) |θ0⟩r = e−rt⟨xn (t) |θ0⟩0 + r
ˆ t

0
dτe−rτ ⟨xn (τ)⟩θ0 . (22)

Next, we calculate the second moment of x using equation (8)
and n= 2 in the equation (22),

⟨x2 (t) |θ0⟩r =
2kBTΓ̄
r

(
1− e−rt

)
+
kBT∆Γcos2θ0
(r+ 4Dθ)

(
1− e−(r+4Dθ)t

)
. (23)

Similarly, one can also calculate ⟨y2(t)|θ0⟩r and the cross-
correlation ⟨x(t)y(t)|θ0⟩r in the presence of resetting. We find

⟨y2 (t) |θ0⟩r =
2kBTΓ̄
r

(
1− e−rt

)
− kBT∆Γcos2θ0

(r+ 4Dθ)

(
1− e−(r+4Dθ)t

)
(24)

⟨x(t)y(t) |θ0⟩r =
kBT∆Γsin2θ0
(r+ 4Dθ)

(
1− e−(r+4Dθ)t

)
. (25)

To gain further insights into the dynamics, we consider

the dynamical exponents ζx(t) =
d[log⟨x2(t)⟩]

d[log t] and ζy(t) =
d[log⟨y2(t)⟩]

d[log t] for both x and y directions respectively. These are
plotted in figure (2). In figure (2), we chose the particle ini-
tially oriented along the x direction. Without resetting, the
exponent ζ(t) clearly exhibits three distinct regimes—short
time diffusive regime (ζx,y(t)≈ 1) for both the x and y direc-
tions, intermediate superdiffusion (ζy(t)> 1) for y direction
and subdiffusion (ζx(t)< 1) for x direction and long time dif-
fusive motion (ζx,y(t)≈ 1) for both the x and y directions. A
transition to confined motion (ζx,y(t)≈ 0) occurs in the pres-
ence of resetting. At a very short times, t≪min(r−1,D−1

θ ),
the particle moves diffusively in each direction with different
mobilities Γ|| and Γ⊥ for θ0 = 0 as shown in equations (12),
and the motion is not yet affected by resetting. After the char-
acteristic timescale set by rotational diffusion, the particle per-
forms diffusive motion with an effective diffusion constant D̄
due to the decorrelation in the orientational degrees of free-
dom. Since the mobility in the x and y directions are larger
and smaller than D̄ respectively, the motion in these directions
must be decelerated or accelerated to reach the isotropic dif-
fusivity D̄ in the long time limit. In the presence of resetting,
a transition to confinement (ζx,y ≈ 0) occurs at a typical time
r−1, potentially interrupting the other dynamical regimes.

Since resetting bring the particle orientation back to its
initial angle, the anisotropy found in the short-time expan-
sions equation (12) is partially promoted to late times. To
see this, we consider as a measure for the late-time aniso-
tropy the ratio of the mean squared displacements in the x
and y directions. In the absence of resetting, the steady-state
second moment in the presence of resetting for a spherical
Brownian particle with diffusivity D̄ is 2D̄

r along both the x
and y directions. However, the steady-state second moments in
the presence of resetting for the anisotropic particle are mod-
ified and become larger or smaller than 2D̄

r in the x and y dir-

ections. Indeed, at late times ⟨x2|θ0⟩= 2D̄
r + kBT∆Γcos2θ0

(r+4Dθ)
and

⟨y2|θ0⟩= 2D̄
r − kBT∆Γcos2θ0

(r+4Dθ)
. The ratio of the variances is given

by

Kr =
⟨x2 (t) |θ0⟩r
⟨y2 (t) |θ0⟩r

=

2D̄
r + kBT∆Γcos2θ0

(r+4Dθ)

2D̄
r − kBT∆Γcos2θ0

(r+4Dθ)

. (26)

In the case of a spherical particle (∆Γ = 0), one obtainsKr = 1
independent of the stochastic resetting. The motion is not iso-
tropic for ∆Γ ̸= 0 under the resetting of all the variables,
and the degree of anisotropy increases with r and eventu-
ally saturates, as shown in figure (3). The timescale of the
cross-correlation between x and y directions is renormalized in
the presence of resetting, but the form remains invariant (see
equations (13) and (25)).

3.1. Perturbative steady state for near-symmetric particles

While we can derive exact expressions for the lower-order
moments as discussed above, we would also like to gain
insights into the overall shape of the non-equilibrium steady
state under resetting. To achieve this, we consider for simpli-
city a perturbative approach where we calculate the propagator
in the absence of resetting, and then use the renewal approach
to resetting in order to find the steady state.
In the absence of resetting, the dynamics can be described by
the Smoluchowski–Perrin equation

∂tP0 (X, t|X0) = Dθ∂
2
θP0 (X, t|X0)

+∇· [D ·∇]P0 (X, t|X0) , (27)

where D is the diffusion tensor Dij = kBTΓij = D||ninj+
D⊥(δij− ninj)with n= (cosθ,sinθ) the unit vector pointing
along the particle’s major axis.

Performing a Fourier transform to the equation (27), we
find

∂tP̂0 (k,θ, t|θ0) = Dθ∂
2
θP̂0 (k,θ, t|θ0)

+ k · [D · k] P̂0 (k,θ, t|θ0) . (28)

where P̂0(k,θ, t|θ0)≡
´
dxe−ik·xP0(x,θ, t|θ0).

For simplicity, we here consider the steady state in the x-
direction. Hence, we consider a wave vector k= kex, with ex

5
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Figure 2. Dynamical exponents ζx(t) and ζy(t) for the mean squared displacement in the x and y direction for various values of resetting
rate. The black line shows the exponents without resetting. Parameters are set to Γ̄ = 1.0, ∆Γ= 0.001, with initial orientation θ0 = 0.

Figure 3. Ratio of variances Kr as a function of resetting rate. The
anisotropy grows with resetting rate, and saturates in the r→∞
limit.

the unit vector in the x-direction. The marginal distribution in
the x direction for equation (28) satisfies [76]

∂tP0 (k,θ, t|θ0) =
[
Dθ∂

2
θ − k2

(
D̄+

∆D
2

cos(2θ)

)]
×P0 (k,θ, t|θ0) . (29)

A natural interpretation of the equation (29) is that the effect-
ive diffusivity in the x-direction D̄+ ∆D

2 cos(2θ) depends on
the orientation of the particle. To find an analytical solution
of equation (29) that provides some insight into the shape
of the steady state under resetting, we consider a perturb-
ative approach, where we expand P0(k,θ, t|θ0) in power of
the dimensionless asymmetry parameter ε≡∆D/D̄. We sim-
plify the Fourier transformed marginal Smoluchowski-Perrin
equation (29) as

∂tP0 (k,θ, t|θ0) = Dθ∂
2
θP̂0 (k,θ, t|θ0)− k2D̄P̂0

− ε k2D̄
cos(2θ)

2
P̂0 (k,θ, t|θ0) . (30)

Next, we expand P0(k,θ, t|θ0) in powers of the asymmetry
parameter ε as

P0 (k,θ, t|θ0) =
∞∑
n=0

pn (k,θ, t|θ0)εn. (31)

where pn(k,θ, t|θ0) is the coefficient function of the power
series. Inserting this ansatz (equation (31)) into the Fourier
transformed Smoluchowski–Perrin equation (30) gives the
coupled equations

∂tp0 (k,θ, t|θ0) = Dθ∂
2
θp0 (k,θ, t)− k2D̄p0 (k,θ, t|θ0) for n= 0,

(32)

∂tpn (k,θ, t|θ0) =
[
Dθ∂

2
θ − k2D̄

]
pn (k,θ, t|θ0)

− k2D̄cos(2θ)
2

pn−1 (k,θ, t|θ0) for n⩾ 1.

(33)

First, we note that p0(k,θ, t) is nothing but the Gaussian solu-
tion of a symmetric colloid. As we are interested in the spatial
steady state to first order, we integrate over the angular vari-
able for n= 0,1 in the above equations (32) and (33), leading
to

∂tp0 (k, t) =−k2D̄p0 (k, t) , (34)

∂tp1 (k, t|θ0) =−k2D̄p1 (k, t|θ0)

− k2D̄p0 (k, t)
ˆ

dθ
cos(2θ)

2

exp
(
− (θ−θ0)

2

4Dθ t

)
√
4πDθt

(35)

where we used the fact that the angular displacement is a
Gaussian random variable. Here the zeroth order solution of
equation (34) reads

p0 (k, t) = e−D̄k2t. (36)

6
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The integration in equation (35) for the first order correction
can be carried out exactly by using equation (9), yielding

∂tp1 (k, t|θ0) =−k2D̄p1 (k, t|θ0)− k2D̄cos(2θ0)p0 (k, t)
e−4Dθ t

2
.

(37)

Substituting equations (36) in (37) and performing a Laplace
transform for time t results in

ˆ̃p1 (k,s|θ0) =− k2D̄cos(2θ0)
2(s+ 4Dθ + D̄k2)(s+ k2D̄)

(38)

where ˜̂p1(k,s|θ0) =
´∞
0 dte−stp̂1(k, t|θ0). Inverting the Fourier

transform of equation (38), we arrive at the first order correc-
tion to the propagator in the Laplace domain as

p̃1 (x,s|θ0) = cos(2θ0)
α(s)
16Dθ

e−α(s)|x|

− cos(2θ0)
α(s+ 4Dθ)

16Dθ
e−α(s+4Dθ)|x| (39)

where we introduced the inverse lengthscale α(s)≡
√
s/D̄.

Thus, the spatial probability distribution up to the first order
correction without resetting in the Laplace domain would be

P̃0 (x,s|θ0) = p̃0 (x,s|θ0)+ εp̃1 (x,s|θ0)

=
α(s)
2

e−α(s)|x| + εcos(2θ0)
α(s)
16Dθ

e−α(s)|x|

− εcos(2θ0)
α(s+ 4Dθ)

16Dθ
e−α(s+4Dθ)|x| (40)

where p̃0(x,s|θ0) is obtained from equation (36) by apply-
ing Laplace transformation in time and inverse Fourier trans-
formation in space [34]. The term P̃0(x,s|θ0) represents a nor-
malized probability distribution. Since p̃0(x,s|θ0) is already
a normalized distribution, the normalization condition on
P̃0(x,s|θ0) requires that the integral of the perturbative term,
p̃1(x,s|θ0) over all x, must equal zero due to having both pos-
itive and negative values.
We can now easily obtain the steady state under the effect of
resetting by using the renewal equation (21), and letting t→∞
as

Pr (x|0,θ0) = r
ˆ ∞

0
dτe−rτP0 (x, τ |0,θ0) = rP̃0 (x,r|0,θ0) .

(41)

Substituting of equation (40) in equation (41) and replacing s
by r yields the first order correction of the spatial probability
distribution along x direction with resetting as

Pr (x|θ0) =
α(r)
2

e−α(r)|x| + εcos(2θ0)

[
rα(r)
16Dθ

e−α(r)|x|

− rα(r+ 4Dθ)

16Dθ
e−α(r+4Dθ)|x|

]
. (42)

Several things are worth noting. The zeroth order solution of
the steady state probability distribution is determined by a
single length scale α(r) set by resetting. It shows a peak at
x= 0 in figure 4(a) due to the confining effect of the resetting
towards the origin. This peak value increases with increas-
ing the resetting rate r in figure 5(a), as is expected. Once
particle asymmetry is introduced, the solution also depends on
the length scale set by α(r+ 4Dθ), and in addition depends on
the initial orientation θ0. Here, the rotational dynamics enter
into the spatial steady state due to the coupling between the
translational and rotational degrees of freedom, which persists
to late times as discussed above. Figure 4(b) shows that the
first order correction to the distribution is negative at x= 0 for
θ0 = 0, which is consistent with the enhanced motion along
the x direction; hence the steady state widens in this case.
When θ0 = π/2, the long axis of the anisotropic particle will
be along the y axis, resulting in the suppression of the mobil-
ity along the x direction relative to the isotropic diffusivity D̄.
Consequently, the motion in x direction is accelerated at the
intermediate time to achieve D̄ in the long time limit, as dis-
cussed in section 3. This accelerated motion enhances spatial
displacement in the x direction, resulting in a positive first-
order correction to the spatial distribution at x= 0. A similar
argument applies for θ0 = 0, where the first-order correction to
the spatial distribution along the x direction becomes negative
at x= 0. The intermediate angles 2π/10 and 7π/10 represent
gradual transition of particle orientation and the correspond-
ing changes in mobility along the x direction between the two
limiting cases of θ0 = 0 and θ0 = π/2. The peak value of the
first-order correction also increases with the resetting rate r, as
seen in figure 5(b). This is consistent with the observation that
the degree of anisotropy Kr increases with increasing resetting
rate r.

4. Translational resetting

Next, we consider the case where x and y undergo resets while
the orientational degree of freedom θ variable does not reset.
Following the discussion in section 2.2, we have the renewal
equation

Pr (x,y,θ, t|0,0,θ0) = e−rtP0 (x,y,θ, t|0,0,θ0)

+ r
ˆ t

0
dτe−rτ

ˆ
dx ′
ˆ

dy ′
ˆ

dθ ′Pr (x
′,y ′,θ ′, t− τ |0,0,θ0)

×P0 (x,y,θ,τ |0,0,θ ′) . (43)

The propagator for x for this case can be obtained by integrat-
ing the above equation over y, θ, x′ and y′,

Pr (x, t|0,θ0) = e−rtP0 (x, t|0,θ0)+ r
ˆ t

0
dτe−rτ

×
ˆ

dθ ′P0 (θ
′, t− τ |θ0)P0 (x, τ |0,θ ′) . (44)

7
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Figure 4. Steady state marginal density under complete resetting. (a) Zeroth order solution corresponding to the standard Laplacian
solution for a spherical Brownian particle with diffusivity D̄. (b) First order correction to the steady state for a Brownian anisotropic particle
for various θ0. The lengthscale is set by ℓ2 = 2kBTΓ̄/Dθ , and the parameters are set to Dθ = D̄= r= 1.

Figure 5. Steady state marginal density under complete resetting. (a) Zeroth order solution corresponding to a spherical Brownian particle
at different resetting rates. (b) First order correction to the steady state for a Brownian anisotropic particle for various resetting rates. The
lengthscale is set by ℓ2 = 2kBTΓ̄/Dθ , and the parameters are set to Dθ = D̄= r= 1, θ0 = 0.

The corresponding moment for x in that case would be

⟨xn (t) |θ0⟩r = e−rt⟨xn (t) |θ0⟩0

+ r
ˆ t

0
dτe−rτ

ˆ
dθ ′P0

(
θ ′, t− τ |θ0

)
⟨xn (τ) |θ ′⟩.

(45)

Next, we calculate the second moment of x for the anisotropic
particle using equation (8) and n= 2 in equation (45), resulting
in

⟨x2 (t) |θ0⟩r = e−rt2kBT

[
Γ̄t+

∆Γ

2
cos2θ0

(
1− e−4Dθ t

4Dθ

)]

+ r
ˆ t

0
dτe−rτ

ˆ
dθ ′ e−

(θ ′−θ0)
2

4Dθ(t−τ)√
4πDθ (t− τ)

2kBT

×
[
Γ̄τ +

∆Γ

2
cos2θ ′

(
1− e−4Dθτ

4Dθ

)]
=

2kBTΓ̄
r

−
(
2kBTΓ̄
r

− kBT∆Γcos2θ0
4Dθ − r

)
e−rt

− kBT∆Γcos2θ0
4Dθ − r

e−4Dθ t. (46)

Similarly, one can also calculate ⟨y2(t)|θ0⟩r and the cross-
correlation ⟨x(t)y(t)|θ0⟩r in the presence of resetting. We find

⟨y2 (t) |θ0⟩r =
2kBTΓ̄
r

−
(
2kBTΓ̄
r

+
kBT∆Γcos2θ0

4Dθ − r

)
e−rt

+
kBT∆Γcos2θ0

4Dθ − r
e−4Dθ t (47)

⟨x(t)y(t) |θ0⟩r =
2kBT∆Γsin2θ0
2(4Dθ − r)

(
e−rt− e−4Dθ t

)
. (48)

Note that in the limit r→ 4Dθ, the above equations remain
well-defined if the limit is taken carefully. In the long time
limit, both ⟨x2(t)|θ0⟩r and ⟨y2(t)|θ0⟩r approach

2kBTΓ̄
r , and the

steady state ratio of the variances, Kr becomes 1. The cross-
correlation ⟨x(t)y(t)|θ0⟩r will be zero in the long time limit, but
at intermediate times, ⟨x(t)y(t)|θ0⟩r shows a non-monotonic
behavior against time. The initial growth is similar to what
is seen in the absence of resetting, while resets exponen-
tially decrease the correlations at later times. Therefore, as
the state at late time has no cross-correlations and no aniso-
tropy, the steady-state distribution for x will become Pr(x) =

8
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α(r)
2 exp(−α(r)|x|), with α(r) =

√
r/D̄, which is independent

ofDθ. Due to isotropy at late time, the distribution in the y dir-
ection will be identical.

5. Orientational resetting

Finally, we consider the case of orientational resetting, where
θ undergoes resets while the x and y variables do not undergo
resets. Again, we follow the general discussion in section 2.2,
leading to the last renewal equation

Pr (x,y,θ, t|0,0,θ0) = e−rtP0 (x,y,θ, t|0,0,θ0)

+ r
ˆ t

0
dτe−rτ

ˆ
dx ′
ˆ

dy ′

×
ˆ

dθ ′Pr (x
′,y ′,θ ′, t− τ |0,0,θ0)

×P0 (x,y,θ,τ |x ′,y ′,θ0) . (49)

At the time of the last resetting t− τ , the system is in some
arbitrary state (x ′,y ′,θ ′). As only θ is reset to θ0, the sys-
tem proceeds to evolve towards (x,y,θ) from the new initial
condition (x ′,y ′,θ0). The propagator for x for this case can be
obtained by integrating the above equation over y, y ′ θ, and θ ′,

Pr (x, t|0,θ0) = e−rtP0 (x, t|0,θ0)

+ r
ˆ t

0
dτe−rτ

ˆ
dx ′Pr (x

′, t− τ |0,θ0)

×P0 (x, τ |x ′,θ0) . (50)

In the case of complete and translational resetting, the renewal
equations for the spatial moments could be expressed expli-
citly in terms of the corresponding densities without reset-
ting. However, in the present case the probability density
Pr(x, t|0,θ0) is not given explicitly, as it appears both on the
left-hand-side and inside the integral on the right-hand-side of
the renewal equation.

In order to calculate the late-time moments, one can
decouple the equation through the use of Fourier transforms in
space and a Laplace transform in time under the assumption of
spatial homogeneity. Recently, [73] studied the late-time beha-
vior of the moments for this class of problems, where it was
shown that the effective diffusion coefficients take the form

D(x)
eff = lim

t→∞

⟨x2 (t)⟩r
2t

=
r2

2
Lr

[
⟨x2 (t) |θ0⟩0

]
(51)

D(y)
eff = lim

t→∞

⟨y2 (t)⟩r
2t

=
r2

2
Lr

[
⟨y2 (t) |θ0⟩0

]
(52)

whereLr denotes a Laplace transform evaluated at r. Using the
mean squared displacement for the problem without resetting,
we immediately arrive at

D(x)
eff = kBT

(
Γ̄ +

r∆Γcos2θ0
2(r+ 4Dθ)

)
(53)

D(y)
eff = kBT

(
Γ̄− r∆Γcos2θ0

2(r+ 4Dθ)

)
. (54)

In order to obtain a full time-dependent solution of the
moments, we make use of the fact that the positions are them-
selves not coupled, but determined solely by the orientation θ.
Hence, the mean squared displacement takes the same math-
ematical form as in the case of no resetting, equation (8), but
now with the orientational dynamics subject to resets:

⟨x2 (t) |θ0⟩r = 2kBT
ˆ t

0
dt ′

[
Γ̄ +

∆Γ

2
⟨cosθ (t ′) |θ0⟩r

]
. (55)

To calculate ⟨cosθ (t ′) |θ0⟩r in the presence of resetting, we use
the last renewal equation only for θ, which takes the simple
form

Pr (θ, t|θ0) = e−rtP0 (θ, t|θ0)+ r
ˆ t

0
dτe−rτP0 (θ,τ |θ0) . (56)

Multiplying with cos2θ and integrating results in

⟨cos2θ (t) |θ0⟩r = e−rt⟨cos2θ (t) |θ0⟩0

+ r
ˆ t

0
dτe−rτ ⟨cos2θ (τ) |θ0⟩0

= cos(2θ0)e
−(r+4Dθ)t

+
rcos2θ0
r+ 4Dθ

(
1− e−(r+4Dθ)t

)
(57)

Using equation (55), we find

⟨x2 (t) |θ0⟩r = 2kBT
ˆ t

0
dt ′

[
Γ̄ +

∆Γ

2
⟨cosθ (t ′) |θ0⟩r

]
= 2kBT

[(
Γ̄ +

r∆Γcos2θ0
2(r+ 4Dθ)

)
t+

2Dθ∆Γcos2θ0
(r+ 4Dθ)

2

×
(
1− e−(r+4Dθ)t

)]
(58)

Similarly, one can also calculate ⟨y2(t)|θ0⟩r and the cross-
correlation ⟨x(t)y(t)|θ0⟩r in the presence of resetting, resulting
in

⟨y2 (t) |θ0⟩r = 2kBT

[(
Γ̄− r∆Γcos2θ0

2(r+ 4Dθ)

)
t− 2Dθ∆Γcos2θ0

(r+ 4Dθ)
2

×
(
1− e−(r+4Dθ)t

)]
(59)

⟨x(t)y(t) |θ0⟩r = 2kBT
ˆ t

0
dt ′

[
∆Γ

2
⟨sinθ (t ′) |θ0⟩r

]
= 2kBT

[
r∆Γsin2θ0
2(r+ 4Dθ)

t+
2Dθ∆Γsin2θ0
(r+ 4Dθ)

2

×
(
1− e−(r+4Dθ)t

)]
. (60)

In the long time limit, since all expressions grow linearly in
time, we can neglect the constant offset in the above equations,

9
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Figure 6. Dynamical exponents ζx(t) and ζy(t) for the mean squared displacement in the x and y direction for various values of resetting
rate, in the case of orientational resets. The black line shows the exponents without resetting. Parameters are set to Γ̄ = 1.0, ∆Γ= 0.001,
with initial orientation θ0 = 0.

and the variances of the particle’s position in the xy plane and
the cross-correlations between x and y can be written as

⟨x2 (t) |θ0⟩r ≈ 2kBT

(
Γ̄ +

r∆Γcos2θ0
2(r+ 4Dθ)

)
t (61)

⟨y2 (t) |θ0⟩r ≈ 2kBT

(
Γ̄− r∆Γcos2θ0

2(r+ 4Dθ)

)
t (62)

which agrees with the predictions made in equations (53)
and (54). The transient behavior can once again be understood
by considering the dynamical exponents of the motion in the x
and y directions. Figure (6) shows these exponents for the case
θ0 = 0. In this case, the motion in the x direction undergoes a
subdiffusive regime before re-entering a diffusing regime at
late times. The dynamics in the y direction conversely goes
through superdiffusive regime, before also re-entering a dif-
fusive regime.

In contrast to the other resetting schemes considered so far,
we now also have a cross correlation that at late times grows
as

⟨x(t)y(t) |θ0⟩r ≈ 2kBT
r∆Γsin2θ0
2(r+ 4Dθ)

t. (63)

Linear growth of the cross correlations has also been seen,
for example, in multithermostat Brownian systems under the
effect of a Lorentz force [77].

The steady state ratio of the variances, Kr, in the presence
of resetting is given as

Kr =
⟨x2 (t) |θ0⟩r
⟨y2 (t) |θ0⟩r

=

(
Γ̄ + r∆Γcos2θ0

2(r+4Dθ)

)
(
Γ̄− r∆Γcos2θ0

2(r+4Dθ)

) (64)

Using D̄= kBTΓ̄, we see that this is exactly the degree of
anisotropy as in the case of complete resetting. While the
degree of anisotropy is the same, the dynamics is different. In
particular, we obtain a non-zero cross-correlation between x
and y which also grows linearly with time, while for complete
resetting the same cross correlations saturates.

In the long time limit, we can expect that the two-
dimensional probability distribution in the Cartesian compon-
ents will be Gaussian due to the central limit theorem, given
as

P(x,y, t) =
1

4π t
√
Det(Deff)

exp

[
− 1
4t

(x,y)TD−1
eff (x,y)

]
,

(65)

where the effective diffusion tensor is given as

Deff = 2kBT

[
Γ̄ + r∆Γcos2θ0

2(r+4Dθ)
r∆Γ sin2θ0
2(r+4Dθ)

r∆Γ sin2θ0
2(r+4Dθ)

Γ̄− r∆Γcos2θ0
2(r+4Dθ)

]
. (66)

The marginal probability distribution for x can be obtained by
integrating the y variable, given as

P(x, t) =
ˆ

dyP(x,y, t) =
1√

4πD(x)
eff t

exp

[
− x2

4D(x)
eff t

]
. (67)

The same argument holds for the marginal probability distri-
bution for y. However, the long-time probability distribution
in equation (65) cannot be separated into a product of two
independent distributions in the x and y directions. Figure (7)
shows the density plots of the steady state probability distribu-
tion of the position of the particle. The steady state probabil-
ity distribution is isotropic without resetting, and the degree of
anisotropy grows along the direction of initial angle θ0 (dashed
line in figure (7)).
It is worth considering a somewhat more intuitive approach
to understand the unboundedness of the cross-correlation
between x and y with time. We consider the correlation coeffi-
cient defined asC(t) = ⟨x(t)y(t)|θ0⟩√

⟨x2(t)|θ0⟩
√

⟨y2(t)|θ0⟩
. In the presence of

only orientational resetting, C(t) will become constant in the
long-time limit, as can be readily verified by using the above
results. This is similar to the case of the resetting all the vari-
able, where C(t) will also be a constant, which is an imme-
diate consequence of the fact that a steady state is reached in
this case. This non-zero correlation between the two spatial
directions results from the presence of orientational resetting,
while for translational resetting, C(t) will be zero in the long-
time limit.

10
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Figure 7. Fixed-time (tDθ = 4) two-dimensional positional densities under orientational resetting at different rates: r= 0 (panel (a)),
r= 2Dθ (panel (b)) and r= 5Dθ (panel (c)). Lengthscale is set by ℓ2 = 2kBTΓ̄/Dθ . The dashed line shows initial angle θ0. Parameters are
set to θ0 = π/8,Dθ = 1.Γ|| = 1, Γ⊥ = 0.001.

6. Discussion

In this article, we have explored the effects of shape asym-
metry on the two-dimensional diffusive motion of an aniso-
tropic particle in the presence of stochastic resetting. In partic-
ular, we studied the short- and long-time behavior of moments,
cross-correlations and steady-state distributions under various
resetting protocols. It is well known that anisotropic diffusion
persists only for very short times, and that isotropic diffusion
is recovered at long-times. Hence, for practical purposes the
short-time behavior can often be neglected and the movement
of an asymmetric particle can be described by the Langevin
equations for a point particle with an isotropic translational
diffusion coefficient given by the average of the diffusion
coefficients along the major and minor axes of the particle.
This has been shown to be the case for example for a free
particle and in a presence of a harmonic confinement in two
dimensions [25].

We have shown that these assumptions are generally not
valid for resetting schemes that include orientational resets,
and can be restored only if we apply resetting of the transla-
tional degrees of freedom. In this case, the steady-state dis-
tribution, moments and cross-correlations are exactly equal to
the case of a spherical particle in the presence of stochastic
resetting. On the other hand, when orientational resetting
takes place, the short-time anisotropy of the motion is pro-
moted to late times. Both the case of complete resetting
and orientational resetting display this, with the degree of
anisotropy Kr being the same in the two cases. For com-
plete resetting, we calculated both time-dependent moments
and a perturbative steady state. For orientational resetting,
we calculated the effective (anisotropic) diffusion tensor,
which determines the effective Gaussian behavior at late
times.
In future works, it would be interesting to study the first pas-
sage problem for an anisotropic diffusive particle in a two-
dimensions in the presence of resetting. It would also be
interesting to study resetting of other asymmetric particles,
or to study the dynamics of resetting colloids in the pres-
ence of interactions. Intriguing effects of resetting could

also be explored in three dimensions, both for rod-like
particle with one orientational degree of freedom and for
full anisotropic particles [78]. Recently, physical (finite-time)
implementations of resetting through sharp intermittent con-
fining potentials has been studied in the context of spherical
Brownian particles, whereby the system can be described by
a Langevin equation also in the resetting phase [53, 61, 64,
79–82]. Extending these findings to account for anisotropic
particles, where also finite-time schemes for the orientation
must be considered, presents an intriguing direction for fur-
ther investigation.
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Appendix. Derivation of last renewal equation from
the Fokker-Planck approach

For the sake of completeness, we here briefly review the
basic equations governing resetting processes when multiple
degrees of freedom are involved, including both Fokker–
Planck and renewal equations. As a simple example that can
be generalized, we consider a system with two degrees of free-
dom x,y. We further assume that x is coupled to y, while the
converse is not the case. This is similar to how the spatial vari-
ables in the anisotropic diffusion problem are both coupled to
the angular variable, but not vice versa.

At constant rate r the system resets the variable x to x0.
This means that during a small time window dt the probability
of resetting is rdt. Hence, conservation of probability can be

11
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expressed as

Pr (x,y, t+ dt) = (1− rdt)⟨Pr (x−∆x,y−∆y, t)⟩∆x,∆y

+ rdtδ (x− x0)Pr (y, t) . (A1)

This expression accounts for all probability currents flowing
into (x, y) during a small time step dt. The first term cor-
responds to the cases without resetting, where the dynamics
evolves into (x, y) by taking small random steps ∆x,y. The
second term represents the resetting cases, where the delta
function ensures that the only value of x that receives a con-
tribution from resets is x= x0. Furthermore, Pr(y, t) is the
marginal probability density of y, and makes sure that the y
dynamics remains unchanged during the reset. The first term
is the standard term in stochastic differential equations which
turns into the Fokker–Planck operator L̂(x,y) when expanded
in ∆x,y and dt. The augmented Fokker–Planck equation with
the resetting terms will in the continuum limit take the form

∂Pr (x,y, t|x0,y0)
∂t

= LPr (x,y, t|x0,y0)− rPr (x,y, t|x0,y0)

+ rδ (x− x0)
ˆ

dx ′Pr (x
′,y, t|x0,y0)

= LPr (x,y, t|x0,y0)− rPr (x,y, t|x0,y0)
+ rδ (x− x0)Pr (y, t|x0,y0) (A2)

where L is the Fokker–Planck operator for the anisotropic
particle given in equation (27) and we define Pr(y, t|x0,y0)≡´
dx ′Pr(x ′,y, t|x0,y0). Taking the Fourier transform of

equation (A2), one obtains

∂P̃r (k1,k2, t)
∂t

= L̃P̃r (k1,k2, t)− rP̃r (k1,k2, t)

+ rP̃r (k2, t|x0,y0)e−ik1x0 (A3)

equation (A3) is rewritten as

∂P̃r (k1,k2, t)
∂t

+
(
−L̃+ r

)
P̃r (k1,k2, t)=rP̃r (k2, t|x0,y0)e−ik1x0

(A4)

Multiplying both sides of equation (A4) by the integrating

factor e(−L̃+r)t, we get

e(−L̃+r)t
∂P̃r (k1,k2, t)

∂t
+ e(−L̃+r)t (−L̃+ r

)
P̃r (k1,k2, t)

= re(−L̃+r)tP̃r (k2, t|x0,y0)e−ik1x0 (A5)

which implies the differential equation

∂

∂t

[
e(−L̃+r)tP̃r (k1,k2, t)

]
= re(−L̃+r)tP̃r (k2, t|x0,y0)e−ik1x0 .

(A6)

Integrating the above equation (A6), one can obtain

P̃r (k1,k2, t)− e(L̃−r)tP̃r (k1,k2,0)

= r
ˆ t

0
dt ′e(L̃−r)(t−t ′)e−ik1x0 P̃r (k2, t|x0,y0) . (A7)

Using the initial condition Pr(x,y,0|x0,y0) = δ(x− x0)δ(y−
y0), we obtain

P̃r (k1,k2, t|x0,y0)− e−rtP̃0 (k1,k2, t|x0,y0)

= r
ˆ t

0
dt ′e−r(t−t ′)P̃0 (k1,k2, t− t ′|x0,0) P̃r (k2, t ′|x0,y0) .

(A8)

After performing the inverse Fourier transformation of the
above equation (A8), we have

Pr (x,y, t|x0,y0) = e−rtP0 (x,y, t|x0,y0)

+ r
ˆ t

0
dt ′
ˆ

dy ′e−r(t−t ′)P0 (x,y− y ′, t− t ′|x0,0)

×Pr (y
′, t ′|x0,y0) . (A9)

For spatially homogeneous systems, the probability distribu-
tion satisfies

P0 (x− x ′,y− y ′, t) = P0 (x,y, t|x ′,y ′) (A10)

resulting in

Pr (x,y, t|x0,y0) = e−rtP0 (x,y, t|x0,y0)

+ r
ˆ t

0
dt ′
ˆ

dy ′dx ′e−r(t−t ′)P0 (x,y, t− t ′|x0,y ′)

×Pr (x
′,y ′, t ′|x0,y0) (A11)

where we substituted the expression for Pr(y, t|x0,y0). Letting
τ ≡ t− t ′, we arrive at

Pr (x,y, t|x0,y0) = e−rtP0 (x,y, t|x0,y0)

+ r
ˆ t

0
dτe−rτ

ˆ
dy ′dx ′

×Pr (x
′,y ′, t− τ |x0,y0)P0 (x,y, τ |x0,y ′) . (A12)

This is the last renewal equation, which has the natural inter-
pretation as a decomposition into trajectories going from
(x0,y0) to an intermediate random state at the time of the last
reset, (x ′,y ′), before the system resets to (x0,y ′) and evolves
to the final state (x, y).
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