Differently from passive Brownian particles, active particles, also known as self-propelled Brownian particles or microswimmers and nanoswimmers, are capable of taking up energy from their environment and converting it into directed motion. Because of this constant flow of energy, their behavior can be explained and understood only within the framework of nonequilibrium physics. In the biological realm, many cells perform directed motion, for example, as a way to browse for nutrients or to avoid toxins. Inspired by these motile microorganisms, researchers have been developing artificial particles that feature similar swimming behaviors based on different mechanisms. These man-made micromachines and nanomachines hold a great potential as autonomous agents for health care, sustainability, and security applications. With a focus on the basic physical features of the interactions of self-propelled Brownian particles with a crowded and complex environment, this comprehensive review will provide a guided tour through its basic principles, the development of artificial self-propelling microparticles and nanoparticles, and their application to the study of nonequilibrium phenomena, as well as the open challenges that the field is currently facing.
I. INTRODUCTION

Active matter systems are able to take energy from their environment and drive themselves far from equilibrium (Ramaswamy, 2010). Thanks to this property, they feature a series of novel behaviors that are not attainable by matter at thermal equilibrium, including, for example, swarming and the emergence of other collective properties (Schweitzer, 2007). Their study provides great hope to uncover new physics and, simultaneously, to lead to the development of novel strategies for designing smart devices and materials.

In recent years, a significant and growing effort has been devoted to advancing this field and to explore its applications in a diverse set of disciplines such as statistical physics (Ramaswamy, 2010), biology (Viswanathan et al., 2011), robotics (Brambilla et al., 2013), social transport (Helbing, 2001), soft matter (Marchetti et al., 2013), and biomedicine (Wang and Gao, 2012).

An important example of active matter is constituted by natural and artificial objects capable of self-propulsion. Self-propelled particles were originally studied to model the swarm behavior of animals at the macroscale. Reynolds (1987) introduced a “Boids model” to simulate the aggregate motion of flocks of birds, herds of land animals, and schools of fish within computer graphics applications. Vicsek et al. (1995) then introduced his namesake model as a special case. In the Vicsek model, a swarm is modeled by a collection of self-propelling particles that move with a constant speed but tend to align with the average direction of motion of the particles in their local neighborhood (Czirok and Vicsek, 2000; Chaté, Ginelli, Grégoire, Peruani, and Raynaud, 2008). Swarming systems give rise to emergent behaviors, which occur at many different scales; furthermore, some of these behaviors are turning out to be robust and universal, e.g., they are independent of the type of animals constituting the swarm (Buhl et al., 2006). It has in fact become a challenge for theoretical physics to find minimal statistical models that capture these features (Toner, Tu, and Ramaswamy, 2005; Li, Lukeman, and Edelstein-Keshet, 2008; Bertin, Droz, and Grégoire, 2009).

Self-propelled Brownian particles, in particular, have come under the spotlight of the physical and biophysical research communities. These active particles are biological or man-made microscopic and nanoscopic objects that can propel themselves by taking up energy from their environment and converting it into directed motion (Ebbens and Howse, 2010). On the one hand, self-propulsion is a common feature in microorganisms (Lauga and Powers, 2009; Cates, 2012; Poon, 2013) and allows for a more efficient exploration of the environment when looking for nutrients or running away from toxic substances (Viswanathan et al., 2011). A paradigmatic example is the swimming behavior of bacteria such as Escherichia coli (Berg, 2004). On the other hand, tremendous progress has recently been made toward the fabrication of artificial microswimmers and nanoswimmers that can self-propel based on different propulsion mechanisms. Some characteristic examples of artificial self-propelled Brownian particles are provided in Fig. 1 and Table I.

While the motion of passive Brownian particles is driven by equilibrium thermal fluctuations due to random collisions with the surrounding fluid molecules (Babič, Schmitt, and Bechinger, 2005), self-propelled Brownian particles exhibit an interplay between random fluctuations and active swimming that drives them into a far-from-equilibrium state (Erdmann et al., 2000; Schweitzer, 2007; Hänggi and Marchesoni, 2009; Hauser and Schimansky-Geier, 2015). Thus, their behavior can be explained and understood only within the framework of nonequilibrium physics (Cates, 2012) for which they provide ideal model systems.

From a more applied perspective, active particles provide great hope to address some challenges that our society is currently facing—in particular, personalized health care, environmental sustainability, and security (Nelson, Kaliakatsos, and Abbott, 2010; Wang and Gao, 2012; Patra et al., 2013; Abdelmohsen et al., 2014; Gao and Wang, 2014; Ebbens, 2016). These potential applications can be built around the core functionalities of self-propelled Brownian particles, i.e., transport, sensing, and manipulation. In fact,
and nanoparticles, and their application to the study of far-from-equilibrium phenomena, as well as through the open challenges that the field is now facing.

II. NONINTERACTING ACTIVE PARTICLES IN HOMOGENEOUS ENVIRONMENTS

Before proceeding to analyze the behavior of active particles in crowded and complex environments, we set the stage by considering the simpler (and more fundamental) case of individual active particles in homogeneous environments, i.e., without obstacles or other particles. We first introduce a simple model of an active Brownian particle, which will permit us to understand the main differences between passive and active Brownian motion (Sec. II.A) and serve as a starting point to discuss the basic mathematical models for active motion (Sec. II.B). We then introduce the concepts of effective diffusion coefficient and effective temperature for self-propelled Brownian particles, as well as their limitations, i.e., differences between systems at equilibrium at a higher temperature and systems out of equilibrium (Sec. II.C). We then briefly review biological microswimmers (Sec. II.D).

A. Brownian motion versus active Brownian motion

In order to start acquiring some basic understanding of the differences between passive and active Brownian motion, a good (and pedagogic) approach is to compare two-dimensional trajectories of single spherical passive and active particles of equal (hydrodynamic) radius R in a homogenous environment, i.e., where no physical barriers or other particles are present and where there is a homogeneous and constant distribution of the energy source for the active particle.

The motion of a passive Brownian particle is purely diffusive with translational diffusion coefficient

$$D_T = \frac{k_B T}{6 \pi \eta R},$$

where k_B is the Boltzmann constant, T is the absolute temperature, and η is the fluid viscosity. The particle also undergoes rotational diffusion with a characteristic time scale τ_R given by the inverse of the particle’s rotational diffusion coefficient

1The term “active Brownian particle” has mainly been used in the literature to denote the specific, simplified model of active matter described in this section, which consists of repulsive spherical particles that are driven by a constant force whose direction rotates by thermal diffusion. Here we use the term active Brownian particle when we refer to this specific model and its straightforward generalizations (see Sec. II.B.1), while we use the terms “active particle” or “self-propelled particle” when we refer to more general systems.

FIG. 1. Self-propelled Brownian particles are biological or man-made objects capable of taking up energy from their environment and converting it into directed motion. They are microscopic and nanoscopic in size and have propulsion speeds (typically) up to a fraction of a millimeter per second. The letters correspond to the artificial microswimmers in Table I. The insets show examples of biological and artificial swimmers. For the artificial swimmers four main recurrent geometries can be identified so far: Janus rods, Janus spheres, chiral particles, and vesicles.
TABLE I. Examples of experimentally realized artificial microswimmers and relative propulsion mechanisms. The letters in the first column correspond to the examples plotted in Fig. 1.

<table>
<thead>
<tr>
<th>Microswimmer</th>
<th>Propulsion mechanism</th>
<th>Medium</th>
<th>Dimensions</th>
<th>Maximum speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Polydimethylsiloxane platelets coated with Pt (Ismagilov et al., 2002)</td>
<td>Bubbles generated in a H₂O₂ aqueous solution by asymmetric patterns of Pt</td>
<td>H₂O₂ aqueous meniscus</td>
<td>1 cm</td>
</tr>
<tr>
<td>b</td>
<td>Rod-shaped particles consisting of Au and Pt segments (Paxton et al., 2004)</td>
<td>Catalysis of oxygen at the Pt end of the rod</td>
<td>Near a boundary in H₂O₂ aqueous solution</td>
<td>2 μm (length), 370 nm (width)</td>
</tr>
<tr>
<td>c</td>
<td>Linear chains of DNA-linked magnetic colloidal particles attached to red blood cells (Dreyfus et al., 2005)</td>
<td>External actuation of the flexible artificial flagella by oscillating magnetic fields</td>
<td>Aqueous solution</td>
<td>30 μm</td>
</tr>
<tr>
<td>d</td>
<td>Janus spherical particles with a catalytic Pt patch (Howse et al., 2007)</td>
<td>Self-diffusiophoresis catalyzed by a chemical reaction on the Pt surface</td>
<td>H₂O₂ aqueous solution</td>
<td>1.6 μm</td>
</tr>
<tr>
<td>e</td>
<td>DNA-linked anisotropic doublets composed of paramagnetic colloidal particles (Tierno et al., 2008)</td>
<td>Rotation induced by a rotating magnetic field</td>
<td>Near a boundary in aqueous solution</td>
<td>3 μm</td>
</tr>
<tr>
<td>f</td>
<td>Chiral colloidal propellers (Ghosh and Fischer, 2009)</td>
<td>External actuation by a magnetic field</td>
<td>Aqueous solution</td>
<td>2 μm (length), 250 nm (width)</td>
</tr>
<tr>
<td>g</td>
<td>Janus particles half-coated with Au (Jiang, Yoshinaga, and Sano, 2010)</td>
<td>Self-thermophoresis due to local heating at the Au cap</td>
<td>Aqueous solution</td>
<td>1 μm</td>
</tr>
<tr>
<td>h</td>
<td>Catalytic microjets (Sanchez et al., 2011)</td>
<td>H₂O₂ catalysis on the internal surface of the microjet</td>
<td>H₂O₂ aqueous solution</td>
<td>50 μm (length), 1 μm (width)</td>
</tr>
<tr>
<td>i</td>
<td>Water droplets containing bromine (Thutupalli, Seemann, and Herminghaus, 2011)</td>
<td>Marangoni flow induced by a self-sustained browning gradient along the drop surface</td>
<td>Oil phase containing a surfactant</td>
<td>80 μm</td>
</tr>
<tr>
<td>j</td>
<td>Janus particles with light-absorbing patches (Volpe et al., 2011; Buttinoni et al., 2012; Kümmel et al., 2013)</td>
<td>Local demixing of a critical mixture due to heating associated with localized absorption of light</td>
<td>Critical mixture (e.g., water-2,6-lutidine)</td>
<td>0.1–10 μm</td>
</tr>
<tr>
<td>k</td>
<td>Rod-shaped particles consisting of Au and Pt (or Au and Ru) segments (Wang et al., 2012)</td>
<td>Self-acoustophoresis in a ultrasonic standing wave</td>
<td>Aqueous solution</td>
<td>1–3 μm (length), 300 nm (width)</td>
</tr>
<tr>
<td>l</td>
<td>Pt-loaded stomatocytes (Wilson, Nolte, and van Hest, 2012)</td>
<td>Bubbles generated in a H₂O₂ aqueous solution by entrapped Pt nanoparticles</td>
<td>H₂O₂ aqueous solution</td>
<td>0.5 μm</td>
</tr>
<tr>
<td>m</td>
<td>Colloidal rollers made of PMMA beads (Bricard et al., 2013)</td>
<td>Spontaneous charge symmetry breaking resulting in a net electrostatic torque</td>
<td>Conducting fluid (hexadecane solution)</td>
<td>5 μm</td>
</tr>
<tr>
<td>n</td>
<td>Polymersc spheres encapsulating most of an antiferromagnetic hematite cube (Palacci et al., 2013)</td>
<td>Self-phoretic motion near a boundary due to the decomposition of H₂O₂ by the hematite cube when illuminated by ultraviolet light</td>
<td>Near a boundary in H₂O₂ aqueous solution</td>
<td>1.5 μm</td>
</tr>
<tr>
<td>o</td>
<td>Water droplets (Izri et al., 2014)</td>
<td>Water solubilization by the reverse micellar solution</td>
<td>Oil phase with surfactants above the critical micellar solution</td>
<td>60 μm</td>
</tr>
<tr>
<td>p</td>
<td>Janus microspheres with Mg core, Au nanoparticles, and TiO₂ shell layer (J. Li et al., 2014)</td>
<td>Bubble thrust generated from the Mg-water reaction</td>
<td>Aqueous solution</td>
<td>20 μm</td>
</tr>
<tr>
<td>q</td>
<td>Hollow mesoporous silica Janus particles (Ma, Hahn, and Sanchez, 2015; Ma et al., 2015)</td>
<td>Catalysis powered by Pt or by three different enzymes (catalase, urease, and glucose oxidase)</td>
<td>Aqueous solution</td>
<td>50–500 nm</td>
</tr>
<tr>
<td>r</td>
<td>Janus particles half coated with Cr (Nishiguchi and Sano, 2015)</td>
<td>Bubbles generated in a H₂O₂ aqueous solution by entrapped Pt nanoparticles</td>
<td>Aqueous solution</td>
<td>3 μm</td>
</tr>
<tr>
<td>s</td>
<td>Enzyme-loaded polymeric vesicles (Joseph et al., 2016)</td>
<td>Glucose catalysis powered by catalase and glucose oxidase</td>
<td>Aqueous solution</td>
<td>0.1 μm</td>
</tr>
</tbody>
</table>
The corresponding stochastic differential equations are

\[\frac{D_R}{R^2} = \frac{k_BT}{8\pi\eta R^3} \]

(2)

From the above formulas, it is clear that while the translational diffusion of a particle scales with its linear dimension, its rotational diffusion scales with its volume. For example, for a particle with \(R \approx 1 \mu m \) in water, \(D_T \approx 0.2 \mu m^2 s^{-1} \) and \(D_R \approx 0.17 \text{ rad}^2 \text{ s}^{-1} \) \((\tau_R \approx 6 \text{ s}) \), while for a particle 10 times smaller \((R \approx 0.1 \mu m)\), \(D_T \approx 2 \mu m^2 s^{-1} \) is 1 order of magnitude larger but \(D_R \approx 170 \text{ rad}^2 \text{ s}^{-1} \) is 3 orders of magnitude larger \((\tau_R \approx 6 \text{ ms}) \).

In a homogeneous environment, the translational and rotational motions are independent from each other. Therefore, the stochastic equations of motion for a passive Brownian particle in a two-dimensional space are

\[\dot{x} = \sqrt{2D_{Tx}} \xi_x, \quad \dot{y} = \sqrt{2D_{Ty}} \xi_y, \quad \dot{\phi} = \sqrt{2D_R} \xi_\phi, \]

(3)

where \([x, y]\) is the particle position, \(\phi\) is its orientation \([\text{Fig. 2(a)}]\), and \(\xi_x, \xi_y, \text{ and } \xi_\phi\) represent independent white noise stochastic processes with zero mean and correlation \(\delta(t)\). Interestingly, the equations for each degree of freedom (i.e., \(x, y, \text{ and } \phi\)) are decoupled. Inertial effects are neglected because microscopic particles are typically in a low-Reynolds-number regime \([\text{Purcell, 1977}]\). Some examples of the corresponding trajectories are illustrated in \(\text{Fig. 2(b)}\).

For a self-propelled particle with velocity \(v\) instead, the direction of motion is itself subject to rotational diffusion, which leads to a coupling between rotation and translation. The corresponding stochastic differential equations are

\[\dot{x} = v \cos \phi + \sqrt{2D_{Tx}} \xi_x, \quad \dot{y} = v \sin \phi + \sqrt{2D_{Ty}} \xi_y, \quad \dot{\phi} = \sqrt{2D_R} \xi_\phi. \]

(4)

Some examples of trajectories for various \(v\) are shown in \(\text{Figs. 2(c)–2(e)}\): as \(v\) increases, we obtain active trajectories that are characterized by directed motion at short time scales; however, over long time scales the orientation and direction of motion of the particle are randomized by its rotational diffusion \([\text{Howse et al., 2007}]\).

To emphasize the difference between Brownian motion and active Brownian motion, it is instructive to consider the average particle trajectory given the initial position and orientation fixed at time \(t = 0\), i.e., \(x(0) = y(0) = 0\) and \(\phi(0) = 0\). In the case of passive Brownian motion, this average vanishes by symmetry, i.e., \(\langle x(t) \rangle = \langle y(t) \rangle = 0\), where \(\langle \cdot \cdot \cdot \rangle\) represents the ensemble average. For an active particle instead, the average is a straight line along the \(x\) direction (determined by the prescribed initial orientation),

\[\langle x(t) \rangle = \frac{v}{D_R} [1 - \exp(-D_R t)] = v \tau_R \left[1 - \exp \left(-\frac{t}{\tau_R}\right) \right], \]

(5)

while \(\langle y(t) \rangle \equiv 0\) because of symmetry. This implies that, on average, an active Brownian particle will move along the direction of its initial orientation for a finite persistence length

\[L = \frac{v}{D_R} = \frac{v \tau_R}{D_R}. \]

(6)

before its direction is randomized.

The relative importance of directed motion versus diffusion for an active Brownian particle can be characterized by its Péclet number

\[\text{Pe} \propto \frac{v}{\sqrt{D_T D_R}}, \]

(7)

where the proportionality sign is used because the literature is inconsistent about the value of the numerical prefactor. If \(\text{Pe}\) is small, diffusion is important, while if \(\text{Pe}\) is large, directed motion prevails.

The model for active Brownian motion described by Eqs. (4) can be straightforwardly generalized to the case of an active particle moving in three dimensions. In this case, the particle position is described by three Cartesian coordinates, i.e., \([x, y, z]\), and its orientation by the polar and azimuthal angles, i.e., \([\theta, \phi]\), which perform a Brownian motion on the unit sphere \([\text{Carlsson, Ekholm, and Elvingson, 2010}]\).

B. Phenomenological models

In this section, we extend the simple model introduced in Sec. II.A to describe the motion of more complex (and realistic) active Brownian particles. First, we introduce models that account for chiral active Brownian motion (Sec. II.B.1). We then consider more general models of active Brownian motion where reorientation occurs due to mechanisms other than rotational diffusion (Sec. II.B.2) and where the active particles are nonspherical (Sec. II.B.3). Finally, we discuss the use of external forces and torques when modeling active

![FIG. 2. Active Brownian particles in two dimensions. (a) An active Brownian particle in water \((R = 1 \mu m, \eta = 0.001 \text{ Pa s})\) placed at position \([x, y]\) is characterized by an orientation \(\phi\) along which it propels itself with speed \(v\) while undergoing Brownian motion in both position and orientation. The resulting trajectories are shown for different velocities (b) \(v = 0 \mu m s^{-1}\) (Brownian particle), (c) \(v = 1 \mu m s^{-1}\), (d) \(v = 2 \mu m s^{-1}\), and (e) \(v = 3 \mu m s^{-1}\). With increasing values of \(v\), the active particles move over longer distances before their direction of motion is randomized; four different 10-s trajectories are shown for each value of velocity.](image-url)
Brownian motion (Sec. II.B.4) and we provide some considerations about numerics (Sec. II.B.5).

Before proceeding further, we remark that in this section the microscopic swimming mechanism is completely ignored; in particular, hydrodynamic interactions are disregarded and only the observable effects of net motion are considered. While the models introduced here are phenomenological, they are very effective in describing the motion of microswimmers in homogenous environments. We cast this point in terms of the difference between "microswimmers" and active particles. Microswimmers are force-free and torque-free objects capable of self-propulsion in a (typically) viscous environment and, importantly, exhibit an explicit hydrodynamic coupling with the embedding solvent via flow fields generated by the swimming strokes they perform. Instead, active particles represent a much simpler concept consisting of self-propelled particles in an inert solvent, which provides only hydrodynamic friction and a stochastic momentum transfer. While the observable behavior of the two is the same in a homogenous environment and in the absence of interactions between particles, hydrodynamic interactions may play a major role in the presence of obstacles or other microswimmers. The simpler model of active particles delivers, however, good results in terms of the particle’s behavior and is more intuitive. In fact, the self-propulsion of an active Brownian particle is implicitly modeled by using an effective force fixed in the particle’s body frame. For this reason, in this review we typically consider active particles, while we discuss hydrodynamic interactions in Sec. III [see also Golestanian, Yeomans, and Uchida (2011), Marchetti et al. (2013), and Elgeti, Winkler, and Gompper (2015) for extensive reviews on the role of hydrodynamics in active matter systems]. We provide a more detailed theoretical justification of why active particles are a good model for microswimmers in Sec. II.B.4.

1. Chiral active Brownian motion

Swimming along a straight line, corresponding to the linearly directed Brownian motion considered until now, is the exception rather than the rule. In fact, ideal straight swimming occurs only if the left-right symmetry relative to the internal propulsion direction is not broken; even small deviations from this symmetry destabilize any straight motion and make it chiral. One can assign a chirality (or helicity) to the path, the sign of which determines whether the motion is clockwise (dextrogyre) or anticlockwise (levogyre). The result is a motion along circular trajectories in two dimensions (circle swimming) and along helical trajectories in three dimensions (helical swimming).

The occurrence of microorganisms swimming in circles was pointed out more than a century ago by Jennings (1901) and, since then, has been observed in many different situations, in particular, close to a substrate for bacteria (Berg and Turner, 1990; DiLuzio et al., 2005; Lauga et al., 2006; Hill et al., 2007; Shenoy et al., 2007; Schmidt et al., 2008) and spermatzoa (Wooley, 2003; Riedel, Kruse, and Howard, 2005; Friedrich and Jülicher, 2008). Likewise, helical swimming in three dimensions has been observed for various bacteria and sperm cells (Jennings, 1901; Brokaw, 1958, 1959; Crenshaw, 1996; Fenchel and Blackburn, 1999; Corkidi et al., 2008; Jékely et al., 2008). Figures 3(a) and 3(b) show examples of E. coli cells swimming in circular trajectories near a glass surface. Superposition of 8-s video images. From Lauga et al., 2006. (b) Circular trajectories are also observed for E. coli bacteria swimming over liquid-air interfaces but the direction is reversed. From Di Leonardo et al., 2011. Trajectories of (c) dextrogyre and (d) levogyre artificial microswimmers driven by self-diffusiophoresis: in each plot, the red bullet corresponds to the initial particle position and the two blue squares to its position after 1 and 2 minutes. The insets show microscope images of two different swimmers with the Au coating (not visible in the bright-field image) indicated by an arrow. From Kümmel et al., 2013.

FIG. 3. Biological and artificial chiral active Brownian motion. (a) Phase-contrast video microscopy images showing E. coli cells swimming in circular trajectories near a glass surface. Superposition of 8-s video images. From Lauga et al., 2006. (b) Circular trajectories are also observed for E. coli bacteria swimming over liquid-air interfaces but the direction is reversed. From Di Leonardo et al., 2011. Trajectories of (c) dextrogyre and (d) levogyre artificial microswimmers driven by self-diffusiophoresis: in each plot, the red bullet corresponds to the initial particle position and the two blue squares to its position after 1 and 2 minutes. The insets show microscope images of two different swimmers with the Au coating (not visible in the bright-field image) indicated by an arrow. From Kümmel et al., 2013.
Evans though the emergence of circular motion can be often attributed to hydrodynamic effects, in this section we focus on a phenomenological description and leave the proper hydrodynamic description to Sec. III.C.

For a two-dimensional chiral active Brownian particle [Fig. 4(a)], in addition to the random diffusion and the internal self-propulsion modeled by Eqs. (4), the particle orientation ϕ also rotates with angular velocity ω, where the sign of ω determines the chirality of the motion. The resulting set of equations describing this motion in two dimensions is (van Teeffelen and Löwen, 2008; Mijalkov and Volpe, 2013; Volpe, Gigan, and Volpe, 2014)

$$\dot{x} = v \cos \varphi + \sqrt{2D_T} \xi_x, \quad \dot{y} = v \sin \varphi + \sqrt{2D_T} \xi_y, \quad \dot{\varphi} = \omega + \sqrt{2D_{R\varphi}} \xi_{\varphi}. \tag{8}$$

Some examples of trajectories are shown in Figs. 4(b)–4(d) for particles of decreasing radius. As the particle size decreases, the trajectories become less deterministic because the rotational diffusion, responsible for the reorientation of the particle direction, scales according to R^{-3} [Eq. (2)]. The model given by Eqs. (8) can be straightforwardly extended to the helicoidal motion of a three-dimensional chiral active particle following an approach along the lines of the discussion at the end of Sec. II.A.

It is interesting to consider how the noise-averaged trajectory given in Eq. (5) changes in the presence of chiral motion. In this case, the noise-averaged trajectory has the shape of a logarithmic spiral, i.e., a spira mirabilis (van Teeffelen and Löwen, 2008), which in polar coordinates is written as

$$\rho \propto \exp \left\{ -D_R |\varphi - \varphi(0)| / \omega \right\}, \tag{9}$$

where ρ is the radial coordinate and φ is the azimuthal coordinate. In three dimensions, the noise-averaged trajectory is a concho spiral (Wittkowski and Löwen, 2012), which is the generalization of the logarithmic spiral. Stochastic helical swimming was recently investigated in Colonial Choanoflagellates (Kirkegaard, Marron, and Goldstein, 2016).

2. Models for active particle reorientation

The simple models presented so far, and, in particular, the one discussed in Sec. II.A, consider an active particle whose velocity is constant in modulus and whose orientation undergoes free diffusion. This type of dynamics, which we refer to as rotational diffusion dynamics [Fig. 5(a)], is often encountered in the case of self-propelling Janus colloids (Howse et al., 2007; Buttinoni et al., 2012; Palacci et al., 2013). There are, however, other processes that generate active Brownian motion; here we consider, in particular, the run-and-tumble dynamics and the Gaussian noise dynamics (Koumakis, Maggi, and Di Leonardo, 2014). More general models include velocity- and space-dependent friction (Taktikos, Zaburdaev, and Stark, 2011; Romanczuk et al., 2012; Babel, ten Hagen, and Löwen, 2014). It has also been recently speculated that finite-time correlations in the orientational dynamics can affect the swimmer’s diffusivity (Ghosh et al., 2015).

The run-and-tumble dynamics [Fig. 5(b)] were introduced to describe the motion of $E.\ coli$ bacteria (Berg and Turner, 1979; Schnitzer, Block, and Berg, 1990; Berg, 2004). They consist of a random walk that alternates linear straight runs at constant speed with Poisson-distributed reorientation events called tumbles. Even though their microscopic (short-time) dynamics are different, their long-time diffusion properties are equivalent to those of the rotational diffusion dynamics described in Sec. II.A (Tailleur and Cates, 2008; Cates and Tailleur, 2013; Solon, Cates, and Tailleur, 2015).

In the Gaussian noise dynamics [Fig. 5(c)], the active particle velocity (along each direction) fluctuates as an Ornstein-Uhlenbeck process (Uhlenbeck and Ornstein, 1930). This is, for example, a good model for the motion of colloidal particles in a bacterial bath, where multiple interactions with the motile bacteria tend to gradually change the direction and amplitude of the particle’s velocity, at least as long as the concentration is not so high to give rise to collective phenomena (Wu and Libchaber, 2000).

Finally, we also consider the interesting limit of the rotational diffusion dynamics when the rotational diffusion is zero, or similarly in the run-and-tumble dynamics when the run time is infinite. In this case, the equations of motion of the active particle contain no stochastic terms and the particle runs in a straight line at constant speed with Poisson-distributed reorientation events entailed by a rotation around an effective external axis. (b)–(d) Sample trajectories of dextrogyre (red, dark gray) and levogyre (yellow, light gray) active chiral particles with $v = 30 \ \mu m/s$, $\omega = 10 \ \text{rad s}^{-1}$, and different radii [$R = 1000, 500,$ and $250 \ \text{nm}$ for (b), (c), and (d), respectively]. As the particle size decreases, the trajectories become less deterministic because the rotational diffusion, responsible for the reorientation of the particle direction, scales according to R^{-3} [Eq. (2)].

3. Nonspherical active particles

The models presented until now, in particular, Eqs. (4) and (8), are valid for spherical active particles. However, while

![FIG. 4. Chiral active Brownian motion in two dimensions. (a) A two-dimensional chiral active Brownian particle has a deterministic angular velocity ω that, if the particle’s speed $v > 0$, entails a rotation around an effective external axis. (b)–(d) Sample trajectories of dextrogyre (red, dark gray) and levogyre (yellow, light gray) active chiral particles with $v = 30 \ \mu m/s$, $\omega = 10 \ \text{rad s}^{-1}$, and different radii [$R = 1000, 500,$ and $250 \ \text{nm}$ for (b), (c), and (d), respectively]. As the particle size decreases, the trajectories become less deterministic because the rotational diffusion, responsible for the reorientation of the particle direction, scales according to R^{-3} [Eq. (2)].](image)
FIG. 5. Sample trajectories of active Brownian particles corresponding to different mechanisms generating active motion: (a) rotational diffusion dynamics, (b) run-and-tumble dynamics, and (c) Gaussian noise dynamics. The dots correspond to the particle position sampled every 5 s.

most active particles considered in experiments and simulations are spherically or axially symmetric, many bacteria and motile microorganisms considerably deviate from such ideal shapes and this strongly alters their swimming properties.

In order to understand how we can derive the equations of motion for nonspherical active Brownian particles, it is useful to rewrite in a vectorial form the model presented in Sec. II.A for the simpler case of a spherical active particle:

$$\gamma \dot{r} = F \hat{e} + \xi,$$

(10)

where $\gamma = 6 \pi \eta R$ denotes the particle’s Stokes friction coefficient (for a sphere of radius R with sticky boundary conditions at the particle surface), r is its position vector, F is an effective force acting on the particle, \hat{e} is its orientation unit vector, and ξ is a random vector with zero mean and correlation $2k_BT \delta(t)$, where I is the identity matrix in the appropriate number of dimensions. If the particle’s orientation does not change, i.e., $\hat{e}(t) \equiv \hat{e}(0)$ (e.g., being fixed by an external aligning magnetic field), the particle swims with a self-propulsion speed $v = F/\gamma$ along its orientation \hat{e} and its trajectory is trivially given by $r(t) = r(0) + vt\hat{e}(0)$. If the particle orientation can instead change, e.g., if \hat{e} is subject to rotational diffusion, the particle will perform active Brownian motion.

We can now generalize these simple considerations for a spherical particle to more complex shapes as systematically discussed by ten Hagen et al. (2015). When the particle has a rigid anisotropic shape, the resulting equations of motion can be written in compact form as

$$\mathcal{H} \cdot \mathbf{v} = \mathbf{K} + \chi,$$

(11)

where \mathcal{H} is the grand resistance matrix or hydrodynamic friction tensor (see also Sec. III.A) (Happel and Brenner, 1991; Fernandes and de la Torre, 2002), $\mathbf{V} = [\mathbf{v}, \omega]$ is a generalized velocity with \mathbf{v} and ω the particle’s translational and angular velocities, $\mathbf{K} = [\mathbf{F}, \mathbf{T}]$ is a generalized force with \mathbf{F} and \mathbf{T} the effective force and torque acting on the particle, and $\mathbf{\chi}$ is a random vector with correlation $2k_BT \delta(t)$. Equation (11) is best understood in the body frame of the moving particle where \mathcal{H}, \mathbf{K}, and \mathbf{V} are constant, but it can also be transformed to the laboratory frame (Wittkowski and Löwen, 2012). In the deterministic limit (i.e., $\mathbf{\chi} = 0$), the particle trajectories are straight lines if $\omega = 0$, and circles in two dimensions (or helices in three dimensions) if $\omega \neq 0$ (Friedrich and Jülicher, 2009; Wittkowski and Löwen, 2012). In the opposite limit when $\mathbf{K} = 0$, we recover the case of a free Brownian particle, which however features nontrivial dynamical correlations (Fernandes and de la Torre, 2002; Makino and Doi, 2004; Kraft et al., 2013; Cichocki, Ekiel-Jezewska, and Wajnryb, 2015).

4. Modeling active motion with external forces and torques

Equation (10) describes the motion of a spherical active particle using an effective “internal” force $\mathbf{F} = \gamma \mathbf{v}$ fixed in the particle’s body frame. \mathbf{F} is identical to the force acting on a hypothetical spring whose ends are bound to the microswimmers and to the laboratory (Takatori, Yan, and Brady, 2014); hence, it can be directly measured, at least in principle. While this force can be viewed as a special force field $\mathbf{F}(\mathbf{r}, \hat{e}) = \mathbf{F}\hat{e}$ experienced by the particle, it is clearly non-conservative, i.e., it cannot be expressed as a spatial gradient of a scalar potential. The advantage in modeling self-propulsion by an effective driving force is that this force can be straightforwardly added to all other existing forces, e.g., body forces from real external fields (like gravity or confinement), forces stemming from the interaction with other particles, and random forces mimicking the random collisions with the solvent. This keeps the model simple, flexible, and transparent. This approach has been followed by many recent works; see, e.g., Chen and Leung (2006), Peruani, Deutsch, and Bär (2006), Li, Lukeman, and Edelstein-Keshet (2008), Mehandia and Prabhhu (2008), Wensink and Löwen (2008), van Teeffelen and Löwen (2008), Angelani, Costanzo, and Di Leonardo (2011), ten Hagen, Wittkowski, and Löwen (2011), Bialké, Speck, and Löwen (2012), Kaiser, Wensink, and Löwen (2012), McCandlish, Baskaran, and Hagan (2012), Wensink and Löwen (2012), Wittkowski and Löwen (2012), Yang et al. (2012), Elgeti and Gompper (2013), Kaiser et al. (2013), Mijalkov and Volpe (2013), Redner, Hagan, and Baskaran (2013), Reichhardt and Olson-Reichhardt (2013a), Costanzo et al. (2014), Fily, Henkes, and Marchetti (2014), and Wang et al. (2014).

These simple considerations for a spherical active particle can be generalized to more complex situations, such as to Eqs. (11) for nonspherical active particles. In general, the following considerations hold to decide whether a model
based on effective forces and torques can be applied safely. On the one hand, the effective forces and torques can be used if we consider a single particle in an unbounded fluid whose propulsion speed is a generic explicit function of time (Babel, ten Hagen, and Löwen, 2014) or of the particle’s position (Magiera and Brendel, 2015). On the other hand, body forces and torques arising, e.g., from an external field or from (nonhydrodynamic) particle interactions can simply be added to the effective forces and torques, under the sole assumption that the presence of the body forces and torques should not affect the self-propulsion mechanism itself. A classical counterexample to this assumption is bimetallic nanorods driven by electrophoresis in an external electric field (Paxton et al., 2004, 2006), as the external electric field perturbs the transport of ions through the rod and the screening around it and thus significantly affects its propagation (Brown and Poon, 2014).

In order to avoid potential confusion, we remark that the use of effective forces does not imply that the solvent flow field is modeled correctly; contrarily, the flow field is not considered at all. When the propagation is generated by a nonreciprocal mechanical motion of different parts of the swimmer, any internal motion should fulfill Newton’s third law such that the total force acting on the swimmer is zero at any time. As we see in more detail in Sec. III, this implies that the solvent velocity field \(\mathbf{u}(r) \) around a swimmer does not decay as a force monopole [i.e., \(\mathbf{u}(r) \propto 1/r \), as if the particle were dragged by a constant external force field], but (much faster) as a force dipole [i.e., \(\mathbf{u}(r) \propto 1/r^2 \)]. The notion of an effective internal force, therefore, seems to contradict this general statement that the motion of a swimmer is force free. The solution of this apparent contradiction is that the modeling via an effective internal force does not resolve the solvent velocity field but is just a coarse-grained effective description for swimming with a constant speed along the particle trajectory. Therefore, the concept of effective forces and torques is of limited utility when the solvent flow field, which is generated by the self-propelled particles, has to be taken into account explicitly. This applies, for example, to the far field of the solvent flow that governs the dynamics of a particle pair [and discriminates between pullers and pushers (Downton and Stark, 2009)], to the hydrodynamic interaction between a particle and an obstacle (Kreuter et al., 2013; Chilukuri, Collins, and Underhill, 2014; Takagi et al., 2014; Sipos et al., 2015), and to the complicated many-body hydrodynamic interactions in a dense suspension of swimmers (Kapral, 2008; Alexander, Pooley, and Yeomans, 2009; Gompper et al., 2009; Reigh, Winkler, and Gompper, 2012). Nonetheless, there are various situations where hydrodynamic interactions do not play a major role. This is the case for dry active matter (Marchetti et al., 2013), for effects close to a substrate where lubrication is dominating, and for highly crowded environments where the hydrodynamic interactions can cancel if no global flow is built up (Wioland et al., 2013).

5. Numerical considerations

Numerically, the continuous-time solution to the set of stochastic differential equations given by Eqs. (4), as well as for the other equations presented in this section, can be obtained by approximating it with a set of finite difference equations (Ernâle and McCammon, 1978; Volpe and Volpe, 2013; Volpe, Gigan, and Volpe, 2014). Even though in most practical applications the simple first-order scheme works best, care has to be taken to choose the time step small enough; higher-order algorithms can also be employed to obtain faster convergence of the solution (Honerkamp, 1993; Kloeden and Pearson, 1999) and to deal correctly with interactions with obstacles or other particles (Behringer and Eichhorn, 2011; Behringer and Eichhorn, 2012).

C. Effective diffusion coefficient and effective temperature

As seen in Sec. II.A, when the speed \(v \) of an active particle increases in a homogeneous environment (no crowding and no physical barriers), its trajectories (Fig. 2) are typically dominated by directed motion on short time scales and by an enhanced random diffusion at long times, the latter due to random changes in the swimming direction (Howse et al., 2007). These qualitative considerations can be made more precise by calculating the mean square displacement \(\text{MSD}(\tau) \) of the motion for both passive and active particles at different values of \(v \), as shown in Fig. 6. The \(\text{MSD}(\tau) \) quantifies how a particle moves away from its initial position and can be calculated directly from a trajectory. For a passive Brownian particle, the \(\text{MSD}(\tau) \) in two dimensions is

\[
\text{MSD}(\tau) = 4D_T\tau, \tag{12}
\]

which is valid for times significantly longer than the momentum relaxation time \(\tau_m = m/\gamma \) of the particle, where \(m \) is the mass of the particle.\(^2\)

For an active particle instead, the theoretical \(\text{MSD}(\tau) \) is given by (Franke and Gruler, 1990; Howse et al., 2007; Martens et al., 2012)\(^3\)

\[
\text{MSD}(\tau) = \left[4D_T + 2v^2 r_R\right] \tau + 2v^2 r_R^2 \left[e^{-\tau/\tau_m} - 1\right]. \tag{13}
\]

\(^{2}\)To be more precise, the theoretical \(\text{MSD}(\tau) \) for a passive Brownian particle is given by the Ornstein-Uhlenbeck formula (Uhlenbeck and Ornstein, 1930), which in two dimensions reads

\[
\text{MSD}(\tau) = 4D_T\tau + \frac{4k_B T}{m} \tau_m [e^{-\tau/\tau_m} - 1].
\]

At long time scales, the \(\text{MSD}(\tau) \) of a passive Brownian particle is therefore linear in time with a slope controlled by the particle’s diffusion coefficient \(D_T \). This occurs for \(\tau \gg \tau_m \) where \(\tau_m \) for small colloidal particles is of the order of microseconds. In a liquid environment, furthermore, also the hydrodynamic memory of the fluid, i.e., the mass of the fluid displaced together with the particle, must be taken into account and can, in fact, significantly increase the effective momentum relaxation time (Lukić et al., 2005; Franosch et al., 2011; Pesce et al., 2014).

\(^{3}\)Note that Eq. (13) is formally equal to the Ornstein-Uhlenbeck formula for the \(\text{MSD} \) of a Brownian particle with inertia, which describes the transition from the ballistic regime to the diffusive regime, although at a much shorter time scale than for active particles (Uhlenbeck and Ornstein, 1930).
This expression for the MSD holds whenever the active speed component is characterized by an exponential decay. This is the case, in particular, for all models for active particle reorientation we considered in Sec. II.B.2, i.e., rotational diffusion, run-and-tumble dynamics, and Gaussian noise dynamics. At very short time scales, i.e., $\tau \ll \tau_R$, this expression becomes $\text{MSD}(\tau) \propto \tau$ for $\tau \ll \tau_R$, ballistic at intermediate time scales $\text{MSD}(\tau) \propto \tau^2$ for $\tau \approx \tau_R$, and again diffusive but with an enhanced diffusion coefficient at long time scales $\text{MSD}(\tau) \propto \tau$ for $\tau \gg \tau_R$.

This simple picture of active particles as hot colloids may be correct in some simple situations, such as dilute noninteracting active particles that sediment in a uniform external force field (Tailleur and Cates, 2009; Palacci et al., 2010; Maggi et al., 2013). However, as soon as interactions become important or external fields are inhomogeneous, one observes phenomena like clustering in repulsive systems or rectification effects (Koumakis, Maggi, and Di Leonardo, 2014; Volpe, Gigan, and Volpe, 2014) that are not compatible with the picture of a quasiequilibrium state at one effective temperature (Argun et al., 2016).

D. Biological microswimmers

Various kinds of biological microswimmers exist in nature, e.g., bacteria (Berg and Brown, 1972; Berg and Turner, 1990; Berg, 2004), unicellular protozoa (Machemer, 1972; Blake and Sleigh, 1974), and spermatozooa (Woolley, 2003; Riedel, Kruse, and Howard, 2005). Typically, the planktonic swimming motion of these microorganisms is generated by flagella or cilia powered by molecular motors (Lauga and Goldstein, 2012; Poon, 2013; Alizadehrad et al., 2015; Elgeti, Winkler, and Gompper, 2015). Alternative methods, such as crawling or swarming, do not involve swimming in a fluid but they rather require cells to move on a substrate or through a gel or porous material.

While many properties of the motion of biological microswimmers can be understood in terms of effective Langevin equations, seen in Sec. II.B, several models have been proposed to understand in more detail their microscopic mechanisms. Lighthill (1952) introduced a model for squirmers in a viscous fluid. The Lighthill model assumes that the movement of a spherical particle, covered by a deformable spherical envelope, is caused by an effective slip velocity between the particle and the solvent. This model was corrected to describe the metachronal wavelike beat of cilia densely placed on the surface of a microorganism by a progressive waving envelope (Blake, 1971). Finally, several approaches have addressed the question of the swimming velocity and rate of dissipation of motile microorganisms with different shapes. Analytically tractable examples of these biological microswimmers consist of point particles connected by active links exerting periodic forcing (Najafi and Golestanian, 2004; Felderhof, 2006), spherical particles that self-propel due to shape modulation of their surface (Felderhof and Jones, 2014), assemblies of rigid spheres that interact through elastic forces (Felderhof, 2014b), or one large sphere propelled by a chain of three little spheres through hydrodynamic and elastic interactions (Felderhof, 2014a). The latter configuration, in particular, has been realized and studied using optically trapped particles (Leoni et al., 2009).

E. Artificial microswimmers

Various methods have been developed to realize artificial microswimmers that can reproduce the swimming behavior of motile biological cells making use of diverse propulsion mechanisms. As seen in Sec. I, these man-made self-propelling particles in fact hold the great promise to change the way in which we perform several tasks in, e.g., health care and environmental applications (Nelson, Kalliakatsos, and Abbott, 2010; Wang and Gao, 2012; Patra et al., 2013; Abdelmohsen et al., 2014; Gao and Wang, 2014). See...
The basic idea behind the self-propulsion of microparticles and nanoparticles is that breaking their symmetry leads to propulsion through various phoretic mechanisms. Independent of the specific propulsion mechanism, the absence of inertial effects requires nonreciprocal driving patterns in Newtonian liquids (Purcell, 1977). Indeed, the temporal motion of flagella or beating cilia found in biological systems follows nonreciprocal and periodic patterns (see also Sec. III.A). Accordingly, this also needs to be taken into account in the design of synthetic microswimmers.

The first demonstration of the concept of swimming powered by asymmetrical chemical reactions can be traced back to the seminal work by Whitesides and co-workers who made millimeter-scale chemically powered surface swimmers (Ismagilov et al., 2002), while the pioneering demonstration of microswimming in bulk was done by Paxton et al. (2004), who reported the propulsion of conducting nanorod devices. Subsequently, in an attempt to realize a synthetic flagellum, Dreyfus et al. (2005) fabricated a linear flexible chain of colloidal magnetic particles linked by short DNA segments. Such chains align and oscillate with an external rotating magnetic field and closely resemble the beating pattern of flagella; moreover, the strength of their swimming speed can be controlled by the rotation frequency of the field.

In general, microswimmers can be powered by two main categories of propulsion mechanisms (Ebbens and Howse, 2010): they can be powered by local conversion of energy (e.g., catalytic processes) or they can be driven by external (e.g., electric, magnetic, acoustic) fields. In this context, it is now important to remark that a distinction exists between internally driven active matter and particles that are brought out of equilibrium by external fields: while microswimmers powered by these two mechanisms feature a motion that can be described with similar effective models (see, e.g., Secs. II.A and II.B), they present quite different microscopic details in their interaction with their environment (see, e.g., their hydrodynamic properties discussed in Sec. III). In some cases, a combination of both is possible, e.g., an external field may be required to induce local energy conversion.

In this section, we first discuss the main physical principles of the propulsion mechanisms based on local energy conversion (Sec. II.E.1) and external fields (Sec. II.E.2). We then introduce the main experimental methods that are used to build a very successful class of artificial microswimmers, i.e., Janus particles (Sec. II.E.3).

1. Propulsion by local energy conversion

A versatile method to impose propulsion forces onto colloidal particles is the use of phoretic transport due to the generation of chemical, electostatic, or thermal field gradients. When such gradients are generated externally, passive colloidal particles move of phoretic motion: for example, when colloids are exposed to an electrolyte concentration gradient, they migrate toward the higher salt regions (Ebel, Anderson, and Prieve, 1988). Therefore, if a particle generates its own local gradient, a self-phoretic motion can take place (Golestanian, Liverpool, and Ajdari, 2007).

The self-generation of gradients by a particle requires some type of asymmetry in its properties, e.g., its shape, material, or chemical functionalization. Based on such considerations, first Paxton et al. (2004) and then Fournier-Bidoz et al. (2005) observed that gold-platinum (Au-Pt) and gold-nickel (Au-Ni) microrods displayed considerably enhanced directed motion in hydrogen peroxide (H₂O₂) solutions. An electrokinetic model seems to be consistent with most experimental observations: the bimetallic microrod is considered as an electrochemical cell that supports an internal electrical current in order to maintain a redox reaction at its two extremities, where protons are created (Pt/ Ni end) and consumed (Au end). Due to the flux of protons along the rod, a fluid flow is generated that moves the rod. We remark that other mechanisms have also been suggested to explain the motion of these microrods, including the formation of oxygen bubbles (Ismagilov et al., 2002). This, however, would suggest the motion of Au-Pt microrods to be in the direction of the Au end (i.e., opposite to the site where the oxygen bubbles are created), which is in disagreement with experimental observations.

Bubble formation in H₂O₂ aqueous solutions as the dominant driving mechanism has been observed in tubular structures of catalytic materials. The internal catalytic wall of these microjets (consisting of Pt) decomposes H₂O₂ into H₂O and O₂. The produced O₂ accumulates inside the tube and forms gas bubbles, which are ejected from one tube extremity, thus causing the propulsion of the microjet in the opposite direction (Solovev et al., 2009, 2010).

Biologically active swimmers have also been created by functionalizing a conductive fiber with glucose oxidase and bilirubin oxidase: in the presence of glucose, a redox reaction takes place leading to a proton flux and thus to a bioelectrochemical self-propulsion (Mano and Heller, 2005).

In contrast to electrically conductive systems, which are essential for the above driving mechanisms, propulsion can also be achieved with dielectric particles (e.g., made of silica, polystyrene, or melamine). The majority of such systems is based on so-called Janus particles (named after the two-faced Roman god), where dielectric colloids are partially coated with thin layers of catalytic materials like Pt or palladium (Pd) (Golestanian, Liverpool, and Ajdari, 2005). When such particles are immersed in an aqueous solution enriched with H₂O₂, they locally decompose it into H₂O and O₂, and thus create a local concentration gradient that eventually leads to self-diffusiophoresis. This concept, which was originally pioneered by Howse et al. (2007), has been very successful and has been used and modified by many other groups worldwide. Instead of Pt or Pd, hematite has also been used as a catalyst; this has the advantage of permitting one to control the H₂O₂ decomposition using light: in fact the hematite catalyzes the H₂O₂ decomposition only when illuminated with blue light (Palacci et al., 2013). The details of the catalytic processes involved in the H₂O₂ decomposition are quite complex and subject to current investigation. For example, the propulsion strength and direction show a strong dependence on added salt and ionic surfactants (Brown and Poon, 2014).

When metal-coated Janus particles are illuminated with strong laser light, temperature gradients along the particles can also form due to the selective heating of the metallic cap. This
leads to a strong self-thermophoretic motion that can be controlled by the incident laser power, as it has been shown in the case of Au-capped colloidal particles (Jiang et al., 2009; Jiang, Yoshinaga, and Sano, 2010; Bregulla, Yang, and Cichos, 2013). However, the need for high intensity gradients can also lead to optical forces (Jones, Maragò, and Volpe, 2015), which can interfere with the self-diffusionphoresis mechanisms.

In contrast to thermophoretic effects, which require sufficiently strong light intensity, much smaller intensity is required when Janus particles are immersed in binary liquid mixtures with a lower critical point. When the bath temperature is kept sufficiently close to the critical temperature, even at small illumination intensities, light absorption at the cap leads to local heating, which results in a local phase separation and in a diffusiophoretic motion due to a concentration gradient across the particle (Volpe et al., 2011; Buttinoni et al., 2012). Because of the much smaller light intensities (compared to the thermophoretic mechanisms described earlier), optical forces are typically negligible. This propulsion mechanism has recently been theoretically investigated by Samin and van Roij (2015) and Würger (2015).

In addition to phoretic forces, Marangoni stresses can also generate particle propulsion. Experimentally, this has been demonstrated, e.g., in a system of water droplets (containing bromine) suspended in an oil phase and stabilized by a surfactant (Thutupalli, Seemann, and Herminghaus, 2011; Schmitt and Stark, 2013). Because of the spontaneous reaction of bromide with the surfactant (bromination), a self-sustained bromination gradient along the drop surface is generated that eventually leads to a Marangoni flow and thus propulsion. A similar mechanism has also been found in pure water droplets that are stabilized in an oil phase with surfactants above the critical micellar concentration (Izri et al., 2014). Capillary forces can also be exploited for self-propulsion through local heating produced by light absorption. Using this mechanism, asymmetric microgears, suspended at a liquid-air interface, can spin at hundreds rpm under wide field illumination with incoherent light (Maggi, Saglimbeni et al., 2015).

Finally, we remark that there are other driving mechanisms that do not rely on asymmetric particles, but where a spontaneous symmetry breaking occurs. For example, the reactive droplets studied by Thutupalli, Seemann, and Herminghaus (2011) produce a spontaneous symmetry breaking of the chemical reaction, which then determines the direction of the propulsion velocity. Izri et al. (2014) reported the spontaneous motion in a system consisting of pure water droplets in an oily surfactant medium. Bricard et al. (2013, 2015) demonstrated that self-propulsion can emerge as the result of a spontaneous symmetry breaking of the electric charge distribution around a colloidal particle immersed in a conducting fluid and in the presence of an electrical field.

2. Propulsion by external fields

In addition to mechanisms based on local energy conversion, a swimming motion can be achieved by the periodic nonreciprocal geometrical deformation or reorientation of the swimmer’s body, which can be achieved by applying some (time-dependent) external fields that induce forces and mechanical torques on the object. For example, the use of a rotating magnetic field leads to the deformation of semi-flexible rods (Dreyfus et al., 2005) and results in a movement resembling that of biological flagella (e.g., in bacteria and spermatozoa); a numerical study of this system was presented by Gauger and Stark (2006). In the case of rigid but chiral magnetic objects (propellers), a rotating magnetic field leads to the rotation of the propeller and thus to a swimming motion that can be fully controlled in three dimensions by using triaxial Helmholtz coils (Ghosh and Fischer, 2009).

Alternatively, the application of vertical alternating magnetic fields to a dispersion of magnetic microparticles at a liquid-air interface leads to the formation of magnetic “snakes” due to the coupling between the liquid’s surface deformation and the collective response of the particles (Snezhko et al., 2009). An elliptically polarized rotating magnetic field can generate the dynamic assembly of microscopic colloidal rotors, which, close to a confining plate, start moving because of the cooperative flow generated by the spinning particles acting as a hydrodynamic “conveyor belt” (Martinez-Pedrero et al., 2015; Martinez-Pedrero and Tierno, 2015).

Forces can also be applied to microscopic objects by excitation of ultrasound waves. Using the interaction of suspended objects with acoustic waves, the levitation, propulsion, rotation, and alignment of metallic microrods have been achieved (Wang et al., 2012): their directional motion is due to a self-acoustophoretic mechanism, whose driving strength depends sensitively on the shape asymmetry of the microrods (e.g., the curvature at their end).

Finally, the application of alternating electric fields to Janus particles has been predicted to lead to an unbalanced liquid flow due to induced-charge electro-osmosis (Ramos et al., 1998; Ajdari, 2000). Directed motion has indeed been observed when Au-coated colloidal particles in NaCl solutions are subject to uniform fields with frequencies in the range from 100 Hz to 10 kHz (Gangwal et al., 2008).

3. Synthesis of Janus particles

Janus particles are special types of microparticles and nanoparticles whose surfaces have two or more distinct physical and/or chemical properties (Golestanian, Liverpool, and Ajdari, 2007). The simplest realization is achieved by dividing the particle into two distinct parts, each either made of a different material or bearing different functional groups. For example, a Janus particle may have one-half of its surface covered by hydrophilic groups and the other half by hydrophobic groups. This gives the particle unique properties related to its asymmetric structure and/or functionalization, which can, in particular, be exploited to obtain self-propulsion. A recent comprehensive review by Walther and Müller (2013) covers all aspects from synthesis and self-assembly to novel physical properties and applications of Janus particles.

The synthesis of Janus nanoparticles requires the ability to selectively create each side of a particle with different chemical properties in a reliable, high-yield, and cost-effective way. Currently, three major methods are used (Lattuada and Hatton, 2011).
Masking: The two main masking techniques that are commonly employed to produce Janus particles are evaporative deposition and suspension at the interface between two fluid phases (Lattuada and Hatton, 2011). In evaporative deposition (Love et al., 2002), homogeneous particles are placed on a surface (e.g., a cover slip) in such a way that only one hemisphere is exposed, typically forming a monolayer colloidal crystal. They are subsequently placed in an evaporation chamber, where they are covered on one side with some materials, typically a metal (e.g., Al, Au, or Pt) or carbon, and finally they are released in an aqueous solution (e.g., by sonication). In the phase-separation technique (Gu et al., 2005), the particles are placed at the interface between two phases in a liquid environment; subsequently, one side is exposed to a chemical that changes the particles’ properties, and finally the Janus particles are released in a homogeneous solution. This latter technique scales particularly well to the nanoscale.

Self-assembly: This can be achieved by the use of block copolymers or selective absorption (Lattuada and Hatton, 2011). Block copolymers are made up of blocks of different polymerized monomers (Erhardt et al., 2001). Competitive absorption involves two substrates that phase separate due to one or more opposite physical or chemical properties. When these substrates are mixed with colloidal particles (e.g., Au nanoparticles), they maintain their separation and form two phases with the particles in the middle (Vilain et al., 2007).

Phase separation: This method involves the mixing of two or more incompatible substances that then separate into their own domains while still part of a single nanoparticle. This method can produce Janus nanoparticles made of two inorganic or organic substances (Carbone and Cozzoli, 2010; Lattuada and Hatton, 2011).

Nonspherical Janus particles with simple shapes, e.g., rods and cylinders, can be produced with methods similar to the ones discussed previously. For example, in the block-copolymer method, the production of Janus spheres, cylinders, sheets, and ribbons is possible by adjusting the molecular weights of the blocks in the initial polymer and also the degree of cross-linking. More complex shapes can be obtained using microphotolithography, which has been used to produce the L-shaped particles shown in Figs. 3(c) and 3(d) (Kümmel et al., 2013), or glancing angle deposition, which has been used to produce the chiral colloidal propellers shown in Fig. 1(f) (Ghosh and Fischer, 2009).

III. HYDRODYNAMICS

As seen in Sec. II, active particles use a wide variety of mechanisms to achieve self-propulsion in liquid environments. In fact, often they are microswimmers that are capable of perturbing the surrounding fluid in a way that generates a net displacement of their own body. The structure of the dynamical laws governing fluid motion is therefore crucial to understand propulsion of individual swimmers. Furthermore, as an active particle moves in a fluid, a complex fluid flow pattern travels along with it and can influence the motion of nearby active or passive floating bodies. Moreover, whenever this flow pattern is distorted from its bulk structure by the presence of obstacles like confining walls, swimming speed, and direction can change leading to phenomena like swimming in circles or trapping by obstacles. The present section is structured in four main parts discussing hydrodynamic effects involved in generating propulsion in the bulk of a fluid (Sec. III.A), particle-particle hydrodynamic interactions (Sec. III.B), hydrodynamic couplings to confining walls (Sec. III.C), and swimming in a non-Newtonian medium (Sec. III.D).

A. Microhydrodynamics of self-propulsion

Swimming at the macroscopic scale heavily relies on the inertia of the surrounding fluid. For example, one of the most simple swimming mechanisms is that employed by scallops, which swim by opening and closing their two valves, as shown in Fig. 7. However, swimming strategies of this kind, i.e., involving a reciprocal shape deformation, are doomed to failure at microscopic scales (Purcell, 1977) (at least in purely viscous liquids, as seen in Sec. III.D), where fluid flows obey kinematic reversibility.

Slow flows of incompressible viscous fluids are governed by Stokes equations

$$\eta \nabla^2 \mathbf{u} - \nabla p = 0, \quad \nabla \cdot \mathbf{u} = 0,$$

(15)

where η is the fluid viscosity, \mathbf{u} is the velocity of the flow, and ∇p is the gradient of the pressure. A flow is slow enough for Eqs. (15) to be valid when the typical speed $v \ll v_c = \eta / \rho L$, where ρ is the fluid density and L is a characteristic length scale. The value of the characteristic speed v_c is on the order of 1 m s$^{-1}$ for water when $L \sim 1 \mu$m and grows as the system size is reduced. The adimensional ratio between the two speeds is the Reynolds number

$$\text{Re} = \frac{v}{v_c} = \frac{\rho L v}{\eta},$$

(16)

FIG. 7. The scallop theorem. Schematic drawing of a scallop performing a reciprocal motion: by quickly closing its two shells, the scallop ejects two fluid jets behind its hinge so that its body recoils in the opposite direction; then, by slowly opening the shells, the scallop comes back to its initial shape with little net displacement. The scallop theorem states that such a reciprocal motion cannot generate propulsion in a (viscous) fluid at a low-Reynolds-number regime (Purcell, 1977). From Qiu et al., 2014.
which is usually interpreted as the relative importance of inertial forces in comparison with viscous forces. Generally, \(\text{Re} \ll 1 \) in all problems involving self-propulsion at the microscale, where typical flow speeds rarely exceed 100 \(\mu \text{m s}^{-1} \) (see Fig. 1 and Table I). Considering, for example, an \(E. \text{coli} \) bacterium swimming in water, \(L \approx 1 \mu \text{m}, v \approx 30 \mu \text{m s}^{-1}, \eta = 0.001 \text{Pa s}, \) and \(\rho = 1000 \text{ kg m}^{-3} \), so that \(\text{Re} \approx 3 \times 10^{-5} \ll 1 \).

A solid object that is dragged through the fluid by external forces imposes a boundary condition to the flow field given by the rigidity condition

\[
u = \mathbf{v} + \mathbf{\omega} \times \rho, \tag{17}\]

where \(\mathbf{v} \) and \(\mathbf{\omega} \) are the instantaneous translational and rotational speeds of the object, and \(\rho \) is a generic point on the body surface. The resulting flow and pressure fields can be obtained by solving Stokes equations [Eqs. (15)] with the boundary conditions [Eq. (17)]. By integrating the stress tensor \(\mathbf{\sigma} = \eta(\nabla \mathbf{v} + \nabla \mathbf{v}^T) \) over the object’s boundary, one obtains the following total force and torque acting on the body:

\[
\mathbf{F} = \oint_S \mathbf{\sigma} \cdot \hat{n} \, dS \tag{18}
\]

and

\[
\mathbf{T} = \oint_S \rho \times \mathbf{\sigma} \cdot \hat{n} \, dS, \tag{19}\]

where \(S \) is a surface enclosing the body, and \(\hat{n} \) is the unit vector perpendicular to the surface. Note that, as seen later, microswimmers are force-free and torque-free objects. From the linearity of Stokes equation the integrations result in a linear relationship

\[
\begin{bmatrix} \mathbf{F} \\ \mathbf{T} \end{bmatrix} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^T & \mathbf{D} \end{bmatrix} \begin{bmatrix} \mathbf{v} \\ \mathbf{\omega} \end{bmatrix}, \tag{20}\]

where \(\mathbf{A}, \mathbf{B}, \) and \(\mathbf{D} \) are tensors determined by the shape and orientation of the object. In particular, \(\mathbf{A} \) represents the translational resistance tensor connecting the linear speed \(\mathbf{v} \) to the force \(\mathbf{F} \) that is needed to move a body in a purely translatory motion with speed \(\mathbf{v} \). Similarly, \(\mathbf{D} \) connects angular speed \(\mathbf{\omega} \) to the torque \(\mathbf{T} \) in pure rotations, and \(\mathbf{B} \) and \(\mathbf{B}^T \) represent the coupling between rotational and translational motion. For example, for a sphere of radius \(R \), \(\mathbf{A} = 6\pi \eta RL, \) \(\mathbf{D} = 8\pi \eta R^3L, \) and \(\mathbf{B} = \mathbf{B}^T = \mathbf{0}. \) In the most general case, however, \(\mathbf{A} \) and \(\mathbf{D} \) are nonisotropic. Furthermore, for chiral bodies, i.e., bodies that do not possess three mutually orthogonal planes of symmetry, \(\mathbf{B} \) and \(\mathbf{B}^T \) do not vanish. Therefore, a rotating chiral body can be used as a propeller generating a thrust force \(\mathbf{B} \cdot \mathbf{\omega}. \) The resistance tensor can be calculated analytically only in very few simple cases (Kim and Karrila, 2005). Approximation schemes with various degrees of complexity exist for slender bodies (Lighthill, 1976). Different schemes have been compared in the particular case of a helical propeller by Rodenborn et al. (2013). Direct experimental measurements of the resistance coefficients of a real flagellar bundle is possible by using optical tweezers (Chattopadhyay et al., 2006; Bianchi et al., 2015).

For example, swimming bacteria like \(E. \text{coli} \) use a helical bundle of flagellar filaments as a propeller for the cell body. The whole cell can be thought of as composed of two rigid bodies that translate as a single rigid object but can rotate with different speeds around a common axis. Assuming that the only nonvanishing speed components are those lying on the cell axis, we can write the following two scalar resistance equations for the cell body and the flagellar bundle:

\[
F_b = A_b v, \quad F_f = A_f v + B_f \omega_f, \tag{21}\]

where subscripts “b” and “f” refer, respectively, to cell body or flagellar bundle. Since no external forces are applied on the swimmer, \(F_b + F_f = 0 \) and the swimming speed is obtained as

\[
v = \frac{B_f \omega_f}{A_b + A_f}. \tag{22}\]

Imposing the torque-free condition one can similarly obtain the body rotation frequency.

The simplified picture of a microswimmer composed of two counterrotating rigid units holds only for swimming procaryotes like bacteria whose flagella are passive filaments connected to the cell body via a rotary motor (Berg, 2003). More generally, the swimming problem can be formulated starting from the common feature that active particles perturb the flow field by imposing specific boundary conditions for \(\mathbf{u}(\rho) \), where \(\rho \) is the position vector of a generic point on the particle surface (Lauga and Powers, 2009). Self-propelling particles use two main mechanisms for imposing boundary conditions for the flow field over their surface:

1. They can modify their shape and displace fluid at contact with sticky boundary conditions (swimmers).
2. They can produce a gradient in some thermodynamic quantity resulting in a phoretic slip velocity that is tangential to the particle surface (squirmers).

The first strategy is mainly adopted by biological active particles that swim by waving or rotating flagella. The second mechanism typically applies to artificial self-propelling particles, like Janus colloids, that use some form of energy stored in the environment to maintain a stationary local gradient of, e.g., concentration or temperature. In both cases the hydrodynamic swimming problem can be formulated in general as follows:

1. Solve Stokes equations with prescribed boundary conditions for the flow field on the particle surface [Eq. (17)], obtaining \(\mathbf{u}(\mathbf{r}) \).
2. Integrate the viscous stress over the particle surface to get the total force and torque acting on the particle [Eqs. (18) and (19)].
3. Impose force-free (\(\mathbf{F} = \mathbf{0} \)) and torque-free (\(\mathbf{T} = \mathbf{0} \)) conditions and solve for the rigid speeds \(\mathbf{v} \) and \(\mathbf{\omega}. \)

The self-propulsion speed \(v(t) \) at a given time \(t \) is then a function of the instantaneous values of the boundary speed distribution \(\mathbf{u}(\rho) \) evaluated at the same time \(t \). While most squirmers impose a stationary slip velocity on their boundary...
resulting in a constant \(\mathbf{v} \), all swimmers necessarily deform in a cyclic (but not reciprocal) way resulting in a time-varying propulsion speed that cycles with the period \(T_p \) of the shape deformation. It can be shown that, since Stokes equations are linear and do not have any explicit dependence on time, the total net displacement after a cycle, i.e., \(\int_0^{T_p} \mathbf{v}(t) \, dt \), vanishes if the shape deformation is reciprocal, i.e., if the cycle is closed by retracing the same sequence of shapes in reverse order (Lauga and Powers, 2009). Najafi and Golestanian (2004) proposed a simple one-dimensional low-Reynolds-number swimmer consisting of three spheres linked by rigid rods whose lengths can change periodically but not reciprocally. Recently, Bet et al. (2016) derived a generalized scallop theorem that allows one to optimize the speed, power, and efficiency of a swimmer by altering its geometry. As a consequence of the scallop theorem a micron-sized scallop cannot swim at low Reynolds number but only move back and forth with no net displacement. Hydrodynamic reversibility, however, breaks down in non-Newtonian fluids (see Sec. III.D) allowing self-propulsion with reciprocal deformations (Qiu et al., 2014).

B. Particle-particle hydrodynamic interactions

Both forced colloids and active particles generate a flow that obeys Stokes equations [Eqs. (15)] subject to the appropriate boundary conditions for the flow field. Although analytical solutions can be obtained only in some very simple cases, the structure of the far-field flows can be discussed on a general basis and, as seen in the following, can be used to anticipate, at least qualitatively, the peculiar interactions that active particles manifest between themselves or with external obstacles and confining walls.

Since Stokes equations are linear, flow fields can be conveniently expressed as the superposition of singular solutions (Pozrikidis, 1992). The dominant singularity for particles driven by external forces is the Stokes flow generated by a point force, also known as the Stokeslet. For a point force of magnitude \(F \) and direction \(\mathbf{e} \) the Stokeslet flow at a position \(\mathbf{r} = r \hat{\mathbf{r}} \) from the force origin is given by

\[
\mathbf{u}_s(\mathbf{r}) = \frac{F}{8\pi\eta r} \left[(\mathbf{e} \cdot \hat{\mathbf{r}}) \hat{\mathbf{r}} + \mathbf{e} \right].
\]

The corresponding field is presented in Fig. 8(a). The magnitude of a Stokeslet decays as the inverse distance from the force origin and describes with good approximation hydrodynamic couplings between externally driven colloidal particles (Meiners and Quake, 1999; Di Leonardo et al., 2007) up to very short interparticle distances. Importantly, active particles propelled by internal forces are instead force free so that the leading term cannot be a Stokeslet.

The next singularity is the Stokes dipole, which can be obtained from the Stokeslet by differentiation and represents the far-field flow generated by two nearby and opposite point forces. There is a close analogy with the multipolar expansion of electric fields, although in the hydrodynamic case the field sources are vector forces rather than scalar charges. Therefore, while electric dipoles are represented by vectors, force dipoles are instead tensors, which can be symmetric when the two point forces are parallel to their separation direction, or antisymmetric when they point in the opposite orthogonal direction to their separation direction. However, since self-propelled particles need to be torque free, the antisymmetric part, that would correspond to a point torque, vanishes and the far-field flow is usually dominated by a symmetric force dipole where forces and separation direction are parallel with the unit vector \(\mathbf{e} \):

\[
\mathbf{u}_d(\mathbf{r}) = \frac{P}{8\pi\eta r^2} \left[3(\mathbf{e} \cdot \hat{\mathbf{r}})^2 - 1 \right] \hat{\mathbf{r}},
\]

where \(P \) is the magnitude of the force dipole having the dimensions of force times length. In flagellated swimming bacteria like \(E. coli \) the dipole arises from having most of the drag on the cell body side and pushing the fluid along the swimming direction while an opposite force is generated on the fluid all along the rotating flagellar bundle. The resulting flow pattern, shown in Fig. 8(b), is purely radial and pushes fluid in the forward and backward directions, while a lateral inward flow guarantees mass conservation. Swimmers of this

![Stokeslet](https://example.com/stokeslet.png)

![Stokes dipole](https://example.com/stokes_dipole.png)

FIG. 8. Flow singularities. (a) Stokeslet corresponding to the far field of an active particle driven by an external force. (b), (c) Stokes dipoles corresponding to active particles driven by an internal force corresponding to (b) pushers and (c) pullers, both moving horizontally.
kind are called pushers ($P > 0$) as opposed to pullers ($P < 0$) like the algae *Chlamydomonas reinhardtii*, where two waving flagella propel a cell body that lags behind in the swimming direction [Fig. 8(c)].

Flows around swimming bacteria have been observed by microparticle imaging velocimetry ([Drescher et al., 2011](#)). The measured flow fields were well approximated by a dipole of Stokeslet with magnitude $F = 0.4$ pN separated by a distance $d = 2\mu$m. The magnitude of the force is consistent with the expected thrust force generated by the flagellar bundle, which is connected to the swimming speed v by $F \approx \eta dv$. The generated flow field is approximately $v(d/r)^2$ representing a small perturbation over the free swimming speed v of a nearby swimmer located at a distance r larger than d. These perturbations could, however, manifest themselves as small couplings in the velocities of nearby swimming cells that are advected by the flows generated by neighbors. It was shown that, if one neglects correlations in the orientation of nearby swimmers, velocity couplings arise from quadrupolar terms, while the effect of dipolar flows cancels out on average ([Liao et al., 2007](#); [Baskaran and Marchetti, 2009](#)), starting with a minimal physical model of a stroke-averaged swimmer in a fluid, derived a continuum description of a suspension of active organisms that incorporates fluid-mediated, long-range hydrodynamic interactions among the swimmers.

Dipolar flow fields also have an associated vorticity given by

$$\Omega(\mathbf{r}) = \nabla \times \mathbf{u}_d = -\frac{3P}{4\pi\eta r^3} (\hat{\mathbf{e}} \cdot \hat{\mathbf{r}})(\hat{\mathbf{e}} \times \hat{\mathbf{r}}). \quad (25)$$

Two nearby swimmers will therefore reorient each other through advection by the vorticity field produced by the neighbor. Since the vorticity field vanishes when either $\hat{\mathbf{e}} \cdot \hat{\mathbf{r}} = 0$ or $\hat{\mathbf{e}} \times \hat{\mathbf{r}} = 0$, two possible equilibrium relative orientations exist: the first one, where the swimming direction is orthogonal to the separation distance, is only stable for pushers [$P > 0$, Figs. 9(a) and 9(c)]. The second one, with $\hat{\mathbf{e}}$ parallel to \mathbf{r}, becomes stable for pullers [$P < 0$, Figs. 9(b) and 9(d)]. Interestingly, in both cases, the equilibrium relative orientation gives rise to reciprocally attractive flows [Eq. (24)]. The reorienting action exerted by nearby swimmers contributes to the bending of swimming trajectories. There are other mechanisms contributing to the reorientation of active particles, such as Brownian rotational diffusion, tumbles in flagellar locomotion, and cell-cell collisions through steric forces. The first two mechanisms do not depend on density and are always present even in diluted suspensions. In concentrated samples, however, cell-cell scattering, through either hydrodynamic interactions or direct contact, may become the dominant reorientation mechanism. Often, at those concentrations where hydrodynamic interactions become relevant, average interparticle distances are so small that higher-order singularities may become predominant ([Liao et al., 2007](#); [Drescher et al., 2011](#)).

C. Hydrodynamic coupling to walls

Active particles may behave very differently when approaching a solid boundary. Although far-field hydrodynamics is often capable of anticipating the correct behavior ([Spagnolie and Lauga, 2012](#)), most reorientation dynamics take place when the particle is in close contact with the boundary. Near-field effects, steric interactions, and direct flagellar contact dynamics ([Kantsler et al., 2013](#)) become predominant in this regime giving rise to a broad range of behaviors, from stable wall trapping [Fig. 31(b)] to wall scattering (Fig. 10). Furthermore, active particles may exhibit rheotaxis (i.e., movement in response to a flow) near walls ([Uspal et al., 2015a, 2015b](#)).

Far-field predictions can be obtained considering the flow generated by the image singularities that need to be collocated inside a bounding wall in order to satisfy the no-slip boundary condition at the wall surface ([Spagnolie and Lauga, 2012](#)). In fact, the leading order effect of image singularities is qualitatively the same as that obtained by replacing the wall with a specular image swimmer located on the opposite side of the wall surface [see Figs. 9(c) and 9(d)]. Therefore, in a very similar way as discussed for swimmer-swimmer interactions, far-field reflected flows will align pushers in a direction that is parallel to the wall surface and attract them to the

4It has been shown experimentally that the flow field around *Chlamydomonas* is not a simple dipole ([Drescher et al., 2010](#); [Guasto, Johnson, and Gollub, 2010](#)).
wall [Fig. 11(a)]. The stable swimming direction for pullers is parallel to the surface normal, leading again to an attractive image flow [Fig. 11(b)].

Although far-field predictions may correctly describe how active particles approach a wall, the actual collision dynamics and the fate of the resulting trajectory will depend on detailed near-field hydrodynamics and contact interactions. Swimming bacteria like *E. coli* display a remarkable tendency to swim in close contact with walls once they reach them (Frymier et al., 1995). Hydrodynamic effects have been proposed to be at the origin of this wall entrapment via two distinct mechanisms: the first one is via far-field reflected flows (Berke et al., 2008; Drescher et al., 2011) as discussed previously. The second mechanism involves hydrodynamic torques that arise in anisotropic bodies swimming in close contact with a wall and leading to tilted swimming, i.e., with the cell swimming direction pointing into the confining wall (Vigeant et al., 2002; Spagnolie and Lauga, 2012). It has been suggested that steric repulsion and rotational Brownian motion might be already enough to reproduce the observed accumulation of bacteria in the proximity of solid flat walls (Li and Tang, 2009; Volpe, Gigan, and Volpe, 2014). However, recent experiments have demonstrated that stable trapping is also observed around cylindrical pillars ruling out steric effects as the sole origin for wall entrapment in *E. coli* bacteria (Sipos et al., 2015). While pusher swimmers like *E. coli* mostly interact with the wall through the cell body that moves ahead of the flagella, puller swimmers like *C. reinhardtii*, moving with beating flagella ahead of the body, display more complex interaction dynamics with confining walls (Kantsler et al., 2013; Contino et al., 2015): near-field effects and direct ciliary contact lead to wall scattering, rather than wall trapping, with the cells escaping from the wall at a characteristic angle that does not depend on the initial direction of approach to the wall. Direct flagellar contact is also important in wall interactions for sperm cells due to the large amplitude of flagellar waveforms (Kantsler et al., 2013). In swimming bacteria like *E. coli*, the chiral nature of the flagella, when combined with the presence of a nearby wall, also results in a tendency to swim along clockwise circular trajectories above solid surfaces (Berg and Turner, 1990; Frymier et al., 1995; Lauga et al., 2006). Such a mechanism can be exploited to direct bacterial motions in microchannels (DiLuzio et al., 2005), or to design microfluidic devices that can sort bacteria according to their motility or size (Hulme et al., 2008). When the boundary condition on the wall changes from no slip on a solid wall to the almost perfect slip on a liquid-air interface, the direction of circular swimming is reversed (Di Leonardo et al., 2011).

D. Non-Newtonian media

Until now we have considered living microorganisms and artificial particles swimming in Newtonian liquids at low Reynolds numbers (Re ≪ 1). However, most biological fluids, where also artificial microswimmers will be required to operate in future envisaged biomedical applications, are...

Generally speaking, the physical properties of a fluid can be described by its viscosity η, which represents the following relationship between the shear stress τ_s and the local shear velocity $\partial u/\partial y$ in a fluid along one direction x:

$$\tau_s = \eta \frac{\partial u_x}{\partial y},$$ \hspace{1cm} (26)

where u_x is the fluid velocity along the x direction and the shear velocity is the gradient of the velocity along the perpendicular direction y. In a Newtonian fluid, η is constant so that the viscous stresses arising from its flow, at every point, are linearly proportional to the local shear rates. Non-Newtonian media, instead, are any fluids whose flow properties differ in any way from this case (i.e., where η changes): the viscosity η can change in different ways, and different types of non-Newtonian fluids can be defined, such as shear-thinning and shear-thickening fluids where η decreases or increases with the shear rate, as well as viscoelastic and viscoplastic fluids. For example, most of the fluids in the human body are viscoelastic (e.g., sputum, mucus, and vitreous humor) (Fung, 1981) with many of them featuring a shear-thinning behavior (e.g., saliva, blood, and synovial fluid) (Nelson and Peyer, 2014; Qiu et al., 2014). In the study of viscoelastic fluids, it is often useful to introduce the Weissenberg number, which is a dimensionless number that compares the viscous forces to the elastic forces; it is often given as

$$Wi = \dot{\gamma} \lambda,$$ \hspace{1cm} (27)

where $\dot{\gamma}$ is the shear rate and λ is the stress relaxation time of the fluid.

The behavior of non-Newtonian media is different from that of simple Newtonian media, such as water, because of their very different microscopic organization, which typically includes the presence of molecules, microparticles, or other complex macromolecular structures. The motion of swimmers will, therefore, also be affected by the physical properties of the fluid in which they are placed: early experiments, for example, showed that $E. coli$ and other types of bacteria can swim more efficiently in high-viscosity gel-forming fluids rather than in water (Schneider and Doetsch, 1974; Berg and Turner, 1979). The explanation of these experiments is still a matter of debate: the current standard model postulates the presence of bacteria-sized pores that allow them relative easy passage (Berg and Turner, 1979; Magariyama and Kudo, 2002). More recent studies suggest that the fast-rotating bacterial flagellum gives rise to a lower local viscosity in its vicinity (Martinez et al., 2014). In the low-Reynolds-number regime, Newtonian fluids are characterized by instantaneous and time-reversible flows that are described by the time-independent Stokes equations. As seen with the scallop theorem, a consequence of this fact is that a swimmer will not be able to move if it is just executing geometrically reciprocal motion (i.e., a sequence of changes in its shapes that are perfectly identical when time reversed) (Purcell, 1977): locomotion at low Reynolds numbers therefore generally requires nonreciprocal actuation of the swimmer that is achieved in nature, e.g., by breaking time-reversal symmetry with rotating helices (Turner, Ryu, and Berg, 2000) and with cilia that show flexible oarlike beats (Brokaw, 1965).

However, theoretical and experimental work showed that breaking time-reversal symmetry is no longer a requirement in non-Newtonian fluids (Fu, Wolgemuth, and Powers, 2009; Keim, Garcia, and Arratia, 2012; Montenegro-Johnson, Smith, and Loghin, 2013; Qiu et al., 2014). Since the scallop theorem no longer holds in complex non-Newtonian fluids, it is possible to design and build novel swimmers that specifically operate in these complex fluids: for example, fluid elasticity can be used to either enhance or retard propulsion in non-Newtonian fluids (Lauga, 2007; Leshansky, 2009; Teran, Fauci, and Shelley, 2010; Liu, Powers, and Breuer, 2011; Espinosa-Garcia, Lauga, and Zenit, 2013; Schamel et al., 2014). Qiu et al. (2014), in particular, reported a symmetric “microscallop” [Fig. 12(a)], a single-hinge microswimmer that can propel itself in a shear-thickening fluid by reciprocal

FIG. 12. Reciprocal swimming in a low-Reynolds-number non-Newtonian medium. (a) A 3D model of a submillimeter-sized “microscallop” capable of swimming in a low-Reynolds-number non-Newtonian fluid. (b), (c) Displacement of the microscallop in a shear-thickening and a shear-thinning fluid. (b) Forward net displacement of the microscallop in a shear-thickening fluid and asymmetric actuation (blue curve). The image is a time-lapse composite picture of five frames at intervals of 50 s, with the net displacement occurring along the x direction. (c) Corresponding image of the microscallop in shear-thickening fluid with symmetric actuation (blue curve) and no discernible net displacement. From Qiu et al., 2014.
motion even at low Reynolds numbers when the activation is asymmetric [Fig. 12(b)], but not when it is symmetric [Fig. 12(c)].

IV. INTERACTING PARTICLES

We now move toward the study of interacting active particles. This is both fundamentally interesting and important in terms of potential applications because various classes of active particles, such as bacteria and artificial microswimmers, are more realistically found in crowded environments, where they interact with both passive particles and other active particles. We first give an overview of the kinds of interactions that take place between colloidal particles, also introducing swarming models (Sec. IV.A). We then proceed to review two main aspects: we first discuss dense suspensions of active Brownian particles, where interesting transitions, such as clustering and self-jamming, can appear as a function of particle density or activity (Sec. IV.B). We then discuss the interactions between active and passive particles, where tantalizing phenomena, such as phase-separation and active-depletion forces, can emerge (Sec. IV.C).

A. Classification of particle interactions

As seen in Secs. II and III, the dynamical properties of isolated active particles are rather well understood and can be modeled in various ways, ranging from particle-based descriptions, where active particles can be assumed to be point particles, disks, ellipses, or otherwise-shaped objects that obey an overdamped equation of motion, to full continuum-based models, where hydrodynamic effects are explicitly taken into account. In all these models, the motion of a single active particle in a homogenous environment is ballistic at short times and diffusive at long times. However, the presence of other active particles in the surroundings leads to mutual interactions, which not only change the single-particle dynamics but also lead to the emergence of cooperative phenomena such as dynamic clustering or phase separation.

Active particles are often subject to the same interaction forces as particles at thermal equilibrium, but the final effects on the particles’ dynamics can be strikingly different. We start by summarizing the most important effective interactions between passive colloids. First, colloidal stabilization can be achieved sterically, which is modeled by an excluded-volume interaction such that two colloids are treated as impenetrable objects that cannot overlap in space. Steric interactions are often numerically implemented in the following way: when a displacement makes two particles overlap, the particles are separated by moving each one-half the overlap distance along their center-to-center axis. In the numerical implementation of Brownian dynamics simulations, the hard-core interaction is typically softened to avoid discontinuities at overlap. Therefore soft repulsive interactions, such as a steep Yukawa model or a truncated-and-shifted Lennard-Jones potential, are frequently employed to describe steric interactions. With the necessary adjustments, these considerations can be extended to particles with more complex shapes (Kirchhoff, Löwen, and Klein, 1996). Second, charge-stabilized suspensions are described by the traditional Derjaguin-Landau-Verwey-Overbeek (DLVO) theory (Derjaguin, 1941; Verwey, 1947), which involves a repulsive electrostatic part (often described by an effective pairwise screened Coulomb interaction) and an attractive part stemming from mutual van der Waals interactions. Other kinds of interactions can also emerge such as hydrodynamic interactions (discussed in Sec. III).

More complex models for the interactions can be considered for nonspherical particles by adding torques, bending effects, or rotations, which affect the direction of the propulsion or motor force (Vicsek and Zafeirakis, 2012). Furthermore, multiple particles can be connected together by springs or other potentials to create active polymers or active membranes.

1. Aligning interactions, Vicsek model, and swarming

We now turn our attention to systems where there are interactions capable of aligning the motion of active particles. In practice, several types of interactions can lead to alignment. For example, alignment can be the result of hydrodynamic interactions between swimmers as seen in Sec. III.B and Fig. 9, steric interactions between elongated particles and even between self-propelled hard disks (Lam, Schindler, and Dauchot, 2015), and hydrodynamics and electrostatic between rolling colloids (Bricard et al., 2013).

Aligning interactions are particularly important in active matter systems, as they can lead to collective motion and swarming. One of the best-known and used collective motion models is the Vicsek model (Vicsek et al., 1995; Czirók, Stanley, and Vicsek, 1997). In its original version, the particles move with a constant velocity and interact only through an alignment term, whereby the direction of motion of particle \(n \) is adjusted based on the average direction of motion of all neighboring particles within a flocking radius. A generalized version of the Vicsek model can be derived from the discrete-time version of Eq. (4), which describes an active Brownian particle in two dimensions, by modifying the equation for the orientation of the particle, obtaining

\[
x_n(t + \Delta t) = x_n(t) + v \Delta t \cos \psi_n + \sqrt{2D_T \Delta t} \xi_{x,n}^t,
\]

\[
y_n(t + \Delta t) = y_n(t) + v \Delta t \sin \psi_n + \sqrt{2D_T \Delta t} \xi_{y,n}^t,
\]

\[
\psi_n(t + \Delta t) = \langle \psi_m(t) \rangle.
\]

where the averaging is over all the particles within a flocking radius. The Vicsek model exhibits a phase transition as a function of increasing particle density from undirected motion to a state where all the particles move in the same direction and bands of particles appear (Grégoire and Chaté, 2004; Chaté, Ginelli, Grégoire, and Raynaud, 2008; Ginelli and Chaté, 2010; Ramaswamy, 2010; Solon, Chaté, and Tailleur, 2015). Furthermore, the Vicsek model can be modified to include steric interactions between particles, which cause crystallization at high densities, as well as interactions with barriers or with a substrate (Drocco, Olson-Reichhardt, and Reichhardt, 2012).
B. Collective behaviors of active particles

In this section we consider dense suspensions of active particles. First, we see how the presence of interacting active particles can lead to the formation of clusters, also known as “living crystals” (Sec. IV.B.1). Then, we see how the presence of active matter can change the rheological properties of the medium, inducing, in particular, active self-jamming (Sec. IV.B.2) and active turbulence (Sec. IV.B.3).

1. Clustering and living crystals

A dilute suspension of passive colloidal particles does not spontaneously form clusters unless there are strong attractive interactions. This is nevertheless possible in suspensions of active particles even in the presence of purely repulsive interactions. This was first predicted theoretically (Tailleur and Cates, 2008; Fily and Marchetti, 2012; Redner, Baskaran, and Hagan, 2013) and was recently observed experimentally (Buttinoni et al., 2013; Palacci et al., 2013).

A simple qualitative explanation of this phenomenon is shown in Figs. 13(a)–13(d); when two active particles collide, they block each other to the persistence of their motion [sequence of Figs. 13(a) to 13(b)]. Such a two-particle cluster is replaced by another particle (k).

FIG. 13. Clustering and living crystals. Qualitative explanation of the clustering process: (a) when two active particles collide head on, (b) they block each other and form a two-particle cluster; (c) the cluster breaks apart on the time scale of the rotational diffusion; and (d) depending on the particle speed and density, another particle might collide before the two-particle cluster has broken apart and, thus, the cluster grows into a three-particle cluster. (e)–(h) Clusters assembled from a homogeneous distribution of active particles (solid area fraction ϕ = 0.14). The false colors show the time evolution of particles belonging to different clusters. The clusters are not static but rearrange, exchange particles, and merge. From Palacci et al., 2013. (i)–(k) Consecutive snapshots of a cluster of active Janus particles. The small dark gray (red) arrows indicate the projected orientations of the caps. Particles along the rim mostly point inward. The particle indicated by the large black arrow in (i) leaves the cluster (j) and is replaced by another particle (k). From Buttinoni et al., 2013.

breaks when one of the two particles points away, which happens on a time scale comparable to the particle reorientation time [e.g., the rotational diffusion time τ_rot given by Eq. (2)] [Fig. 13(c)]. Since the mean time between collisions is controlled by the particle speed and density, depending on these parameters another particle might collide before the two-particle cluster has broken, forming a three-particle cluster [Fig. 13(d)]. This leads to metastable clusters of a few particles or, if the mean collision time falls below a certain value, to the growth of ever larger clusters via the setting of a dynamical instability.

These qualitative considerations have in fact been confirmed by experiments where one observes the formation of clusters at intermediate particle densities (Theurkauff et al., 2012; Ginot et al., 2015) [see also the theoretical work by Pohl and Stark (2014, 2015)]. Because of the steady particle collisions, these clusters are subjected to strong changes in size and shape with their average size increasing with the particle activity. Similar dynamic clusters of finite size were reported for hematite swimmers, as shown in Figs. 13(e)–13(h) (Palacci et al., 2013): in these experiments, the presence of attractive diffusiophoretic interactions could be directly measured. Comparison of the experiments with simulations suggested the presence of a diffusiophoretic aggregation mechanism which was caused by the interaction of the concentration profiles around each particle.

Experiments with active suspensions where diffusiophoretic interactions are negligible also show clustering and phase separation into dense clusters and a dilute gas phase at higher particle concentrations, as shown in Figs. 13(g)–13(k) (Buttinoni et al., 2013). These experimental observations were corroborated by numerical simulations of a minimal model, where only pure (short-ranged) repulsive interactions between the particles were considered and the behavior rationalized in terms of the self-trapping of active particles (Bialké, Löwen, and Speck, 2013).

The formation of active crystals was also observed as the result of collective dynamics of fast swimming bacteria (X. Chen et al., 2015; Petroff, Wu, and Libchaber, 2015).

Theoretical work has highlighted the connection between clustering and phase separation. Tailleur and Cates (2008) introduced the concept of motility-induced phase separation [for a recent review, see Cates and Tailleur (2015)]. Assuming a density dependent motility v(ϕ), there is an instability from a perturbed homogeneous suspension of swimmers if the gradient of dv(ϕ)/dϕ is sufficiently negative such that |dv(ϕ)/dϕ|/v(ϕ) < −1/ϕ. Microscopic approaches combined with an instability analysis start from the Smoluchowski equation (Bialké, Löwen, and Speck, 2013). For large length scales, clustering of active Brownian spheres can be mapped onto phase separation of a passive system with attractive interactions (Speck et al., 2014; Cates and Tailleur, 2015).

We finally remark that hydrodynamic near fields acting between squirmer can play a crucial role in determining their aggregation and collective motion (Zöttl and Stark, 2014). Interestingly, in the presence of a harmonic trapping potential, they can form a self-assembled fluid pump at large enough Péclet numbers (Hennes, Wolff, and Stark, 2014).
2. Self-jamming and active microrheology

Jamming occurs when the density of a loose ensemble of particles such as grains or bubbles becomes high enough that the system can support a shear as if it were a solid. This phenomenon has been intensely studied in the contexts of granular matter, colloids, and emulsions (Van Hecke, 2010; Berthier, Jacquin, and Zamponi, 2011; Coulais, Behringer, and Dauchot, 2014). In certain cases jamming has been shown to have properties consistent with a phase transition (Liu and Nagel, 2010; Reichhardt and Olson-Reichhardt, 2014c). It is thus interesting to ask whether active matter systems can exhibit jamming-like features in the dense limit.

It might seem that increasing the activity would tend to suppress jamming. However, as seen in Sec. IV.B.1, active matter systems can form a self-clustering state in which the particles inside a cluster are locally jammed. Henkes, Fily, and Marchetti (2011) considered the active jamming of self-propelled soft disks. They observed an aligned phase at low densities and a transition to a jammed phase for higher densities. Even within the jammed state, the activity induces large correlated motions of the particles. Berthier and Kurchan (2013) and Berthier (2014) analyzed the collective dynamics of self-propelled particles in the high-density regime, where passive particles undergo a kinetic arrest to an amorphous glassy state, and found that the critical density for dynamic arrest continuously shifts to higher densities with increasing activity.

One method for exploring the onset of jamming in a (passive or active) system is through microrheology. A probe particle is driven through a medium of other particles, and changes in the effective viscosity (or fluctuations of the probe motion) can be used to quantify changes in the medium (Squires and Brady, 2005; Candelier and Dauchot, 2009; Olson-Reichhardt and Reichhardt, 2010): if the medium is gaslike [Fig. 14(a)], the effective viscosity felt by the probe will be well defined with relatively small fluctuations, while if the particles in the medium are jammed [Fig. 14(b)], the effective viscosity will fluctuate more strongly and eventually acquire a dichotomic distribution (corresponding to motion either in the gas or in the solid phase of the active particle solution).

Foffano et al. (2012) numerically studied a colloid driven through an active nematic bath, finding that the drag on the colloid was non-Stokesian and not proportional to the radius of the colloidal particle. They even observed instances of negative drag in which the particle moves in a direction opposite to an externally applied driving force.

Reichhardt and Olson-Reichhardt (2015) numerically studied a probe particle driven with a fixed external driving force \(F_d \) through a bath of run-and-tumble disks whose run length is fixed. At low densities (\(\phi \approx 0.2 \)), the active particles are in a liquid state [Fig. 14(a)], while as the density increases, there is a transition to a phase-separated or clustered state [Fig. 14(b) for \(\phi = 0.5 \)]. Previous studies of an active probe particle near a jamming transition also showed that the probe particle exhibits avalanche behaviors, which were argued to provide evidence that the jamming transition is a continuous phase transition with critical properties (Mognetti et al., 2013; Redner, Baskaran, and Hagan, 2013). In passive systems, jamming is associated with a specific critical density \(\phi_c \), while in active systems the clustered states self-organize into locally jammed regions with local density \(\phi_c \), indicating that active systems can exhibit critical fluctuations well below the bulk jamming density of passive systems.

Even though the results available until now are only numerical, it should be possible to translate these to experiments. For example, it is in principle experimentally feasible to study the drag on a driven probe particle placed in an active bath of swimming bacteria or active colloids as the bath conditions are varied.

3. Active turbulence

A particularly interesting manifestation of collective behavior in microscopic active matter systems is the emergence of turbulent motion with the continuous formation and decay of whirls, jets, and vortices in dense solutions of active particles (Mendelson et al., 1999; Dombrowski et al., 2004; Riedel, Kruse, and Howard, 2005; Cisneros et al., 2007; Saintillan and Shelley, 2007; Sokolov et al., 2007; Breier et al., 2014). The observation of active turbulent patterns in a microscopic active system can be traced back to the experimental work of Mendelson et al. (1999), who observed the organization of swimming cells of Bacillus subtilis into short-lived dynamic patterns. The formation of these patterns seems to be ubiquitous among active matter systems since similar active turbulence has been reported in other active systems on widely varying length and time scales, from suspensions of microtubules, filaments, and molecular motors (Schaller et al., 2010; Sanchez et al., 2012; Sumino et al., 2012) to topological defects in nematic vesicles (Keber et al., 2014), vortices in active nematics (Giomi, 2015), agitated granular matter (Narayan, Ramaswamy, and Menon, 2007), and schools of fish and flocks of birds (Vicsek and Zafeiris, 2012).

Normally turbulence is a consequence of inertia, which is usually negligible at micrometric and smaller length scales; hence, the active turbulence seen in the microscopic active systems needs a different explanation, although, to date, a unified description of the formation and structure of these
patterns remains lacking (Ishikawa et al., 2011; Wensink et al., 2012; Dunkel et al., 2013). The full characterization of the active turbulent spectra needs first a clear justification of power-law scaling over several decades and the corresponding derivation of new classes of nonuniversal exponents; an important step forward in this direction was recently done by Bratanov, Jenko, and Frey (2015).

C. Mixtures of active and passive particles

In this section we consider the interaction between passive and active particles. We start by considering the effect that relatively few active particles can have on the properties of a solution of passive particles (Sec. IV.C.1). We then consider the case of a mixture with similar numbers of active and passive particles, where one can observe phase separation and turbulent behaviors (Sec. IV.C.2). Afterward, we consider the limit where a few passive particles are immersed in a dense suspension of active particles: we therefore introduce the concept of active bath (Sec. IV.C.3), active-particle-powered directed motion and gears (Sec. IV.C.4), and active depletion and active-depletion forces (Sec. IV.C.5). Finally, we consider the role of the shape and flexibility of the passive particles on the effects of an active bath (Sec. IV.C.6). Interesting reviews on some aspects of the topics covered in this section can be found in Bialké, Speck, and Löwen (2015), Cates and Tailleur (2015), and Elgeti, Winkler, and Gompper (2015).

1. Active doping

Doping of colloidal suspensions with a very small amount of active particles can strongly influence their properties and dynamics.

Ni, Cohen Stuart, and Dijkstra (2013) and Ni et al. (2014) showed with numerical simulations that the crystallization of hard-sphere glasses can be dramatically promoted by doping the system with small amounts of active particles.

Kümmel et al. (2015) demonstrated with experiments and numerical simulations that the structure and dynamics of a suspension of passive particles is strongly altered by adding a very small (<1%) number of active particles. Figure 15 illustrates the typical temporal changes in a colloidal suspension when doped with active particles; the active particles herd the passive particles favoring the formation of metastable clusters. Above a minimum passive particle concentration, it is possible to observe the formation of isolated dynamic clusters of passive colloids, which are surrounded by active particles. At higher passive particle concentrations, such activity-induced clusters start to merge and undergo further compression. When exceeding the threshold for spontaneous crystallization, active particles are found to accumulate at the interfacial regions between crystalline domains, where they lead to surface melting.

Using numerical simulations, van der Meer, Filion, and Dijkstra (2016) showed that active dopants can provide a route to removing grain boundaries in polycrystals; since, as we have seen, active dopants both generate and are attracted to defects, such as vacancies and interstitials, they tend to cluster at grain boundaries; thus, the active particles both broaden and enhance the mobility of the grain boundaries, causing rapid coarsening of the crystal domains. Finally, the remaining defects can be made to recrystallize by turning off the activity of the dopants, resulting in a large-scale single-domain crystal.

2. Phase separation and turbulent behavior

A few numerical studies looked into the behavior of dense mixtures with approximately comparable numbers of both active and passive particles. These investigations have reported the emergence of interesting novel phenomena including active-passive segregation between rodlike particles (McCandlish, Baskaran, and Hagan, 2012), emergence of flocking and turbulence (Hinz et al., 2014), and phase separation (Yang et al., 2012; Das et al., 2014; Yang, Manning, and Marchetti, 2014; Farage, Krimninger, and Brader, 2015; Stenhammar et al., 2015; Takatori and Brady, 2015; Tung et al., 2016).

Su, Wang, and I (2015) performed a numerical study of self-propelled rods interacting with passive particles where the passive particles also interact with each other via a Yukawa repulsion that can be tuned from weak to strong. When the coupling between the passive particles is weak, they feature a turbulent behavior, while a strong coupling suppresses the turbulent behavior and allows the formation of a nearly triangular lattice.

3. Active baths

A passive particle is in an active bath when it is in an environment where a wealth of active particles are present, e.g., motile bacteria, as shown in Fig. 16(a) (Wu and
These particles will exert nonthermal forces on the passive object so that it will experience nonthermal fluctuations and will behave widely different from a passive Brownian particle in a thermal bath. For example, a passive colloidal particle in a dense bacterial bath behaves like an active particle due to multiple interactions with the self-propelled bacteria: the measured mean square displacements indicate superdiffusion at short times and normal diffusion at long times (Wu and Libchaber, 2000), as shown in Fig. 16(b). However, the characteristic time at which this transition occurs is not related to the rotational diffusion, but rather to the density and activity of the bacteria acting as active particles. The long-time diffusivity of passive tracers can be orders of magnitude larger than their thermal counterparts (Wu and Libchaber, 2000; Miño et al., 2011) and also displays exponential tails in the distribution of displacements (Leptos et al., 2009; Lin, Thiffeault, and Childress, 2011).

Active particles in the bath can contribute to the enhanced diffusivity of passive tracers through both hydrodynamic interactions (Grégoire, Chaté, and Tu, 2001; Thiffeault and Childress, 2010; Lin, Thiffeault, and Childress, 2011; Pushkin and Yeomans, 2013, 2014) and direct contact forces (Grégoire, Chaté, and Tu, 2001; Valeriani et al., 2011).

The presence of an active bath can also significantly influence the microscopic thermodynamics of a particle. For example, Argun et al. (2016) considered the applicability of Jarzynski equality in the presence of an active bath, finding that it fails because of the presence of non-Boltzmann statistics. This observation points toward a new direction in the study of nonequilibrium statistical physics and stochastic thermodynamics, where also the environment is far from equilibrium.

Moving a step farther, it is also interesting to consider the interactions that emerge between passive particles in an active bath. Angelani et al. (2011) conducted simulations and experiments of passive particles immersed in a bath of run-and-tumble swimming bacteria. Figure 17(a) shows a snapshot of the simulation where the bacteria are represented as spherocylinders with white-colored “heads” indicating their direction of swimming and the passive particles are modeled as spheres. Figure 17(b) shows a corresponding experimental snapshot. As the level of activity of the bacterial bath increases, a short-range “attraction” emerges between passive particles as evidenced by a pronounced peak in the radial distribution function in Fig. 17(c). Figure 17(d) indicates the radial distribution function obtained in experiment, in good agreement with the simulation. The origin of this short-range attraction is a nonequilibrium effect arising from the persistent character of the fluctuating forces exerted by bacteria.

4. Directed motion and gears

Differently from spherical particles, asymmetric passive particles placed in an active bath can feature a directed motion. For example, we consider the case of a V-shaped wedge, such as the one shown in Fig. 18. If the wedge is surrounded by passive particles [Fig. 18(a)], there is no directed motion, because the pressure due to the passive particles is equal on all sides of the object. However, in an active bath, the active particles accumulate in the cusp of the wedge, producing its net propulsion [Fig. 18(b)]. This simple model system has been studied by various groups both numerically and experimentally (Angelani and Di Leonardo, 2010; Mallory, Valeriani, and Cacciuto, 2014; Wensink et al., 2014; Smallenburg and Löwen, 2015). Angelani and Di Leonardo (2010) employed asymmetric wedges to create bacteria-powered shuttles. Kaiser et al. (2014) performed experiments and simulations of a passive wedge placed in a bacterial bath and found that the wedge can undergo directed motion. Maximal efficiency occurs for an intermediate bacterial density, so that a turbulent bath maximizes the speed of the carrier. This can be qualitatively understood by considering two limits: for high dilution, the pushing effect is small since only few swimmers are contributing. For high density, the bath...
is jammed, which leaves no mobility for the carrier; hence, there must be an optimal density that maximizes the transport efficiency in the intermediate turbulent state. As a function of the wedge apex angle the carrier speed attains a maximum at about 90° (Kaiser et al., 2014). Mallory, Valeriani, and Cacciuto (2014) numerically studied a system of asymmetric tracers (partial circles with varied curvature) placed in a bath of self-propelled Janus particles and found that even low densities of active particles can induce pronounced directed motion of the tracers. U-shaped particles were found to be optimal to obtain enhanced transport (Smallenburg and Löwen, 2015). Typically, the tracer speed increases with increasing persistence time of the individual self-propelled particles.

Going beyond a simple wedge, it is also possible to consider self-starting cogwheels that exhibit a spontaneous rotation when in an active bath (Angelani, Di Leonardo, and Ruocco, 2009; Di Leonardo et al., 2010; Sokolov et al., 2010). These bacterial-driven micromotors work as active matter ratchets, whose key operational feature is the trapping of the self-propelled particles in the funnel tips, against which the particles exert their motor force. Purely thermal particles will not accumulate in the funnel tips but will instead diffuse uniformly throughout the system. In the active matter case, the particles exert sufficient force on the cogwheel to move it, indicating that active matter can be used to perform work on appropriately shaped objects. Angelani, Di Leonardo, and Ruocco (2009) performed a numerical study where motile bacteria were modeled as rod-shaped particles undergoing run-and-tumble dynamics and large mobile objects in the shape of asymmetric gears were placed in the bacterial bath. Figures 19(a) and 19(b) illustrate the microscopic particle-wall interactions responsible for the rotation of the gear: in Fig. 19(a), a particle enters the frame from the left, runs along the wall of the gear (outlined in gray), and is shunted back into the bulk. In Fig. 19(b), instead, a particle entering from the right is trapped at the corner of the gear and continues swimming into the corner, generating a torque that drives the rotation of the gear. Thus, the active particles collect in the inner corners of the gear teeth and produce a net torque on it, gradually rotating it in one direction as illustrated by the plot of the angular velocity ω versus time in Fig. 19(c), and producing a realization of a bacteria-powered motor. When a symmetric gear is used instead, as shown in the inset of Fig. 19(c), it does not rotate since the forces exerted on it by the active bath are symmetric. Di Leonardo et al. (2010)
confirmed these results experimentally as shown in Fig. 19(d), showing that an asymmetric gear rotates. Sokolov et al. (2010) also performed experiments on asymmetric gears placed in a bath of swimming bacteria and emphasized that the collective effect of many swimming bacteria can considerably enhance the rotation rate. At high bacteria concentrations, however, the motility of the bacteria decreases, causing a decrease in the rotation rate of the gear. Rectification of asymmetric gears has also been studied for the case where the active particles are small robots (Li and Zhang, 2013) or Janus particles (Maggi et al., 2016). In the latter case, it was shown that a perfectly ordered micromotor can self-assemble when the edge lengths of the microgear are properly chosen with respect to Janus particle diameter.

5. Active depletion

Going beyond the directed motion (or rotation) that an active bath can produce on a single passive object, it is also interesting to consider what kind of interactions emerge between multiple passive particles in the presence of an active bath. We can talk about active depletion, as this case is the natural generalization of the depletion forces arising in passive baths (Asakura and Oosawa, 1954).

Ray, Reichhardt, and Olson Reichhardt (2014) studied one of the simplest configurations, i.e., the case of two parallel plates surrounded by a bath of run-and-tumble active particles. As shown schematically in Fig. 20(a), the plates are separated by a distance d and the net force acting on the plates can be measured as d is varied. The active particles are not allowed to interact with each other but only with the walls, corresponding to a very low active particle density regime. Particles can enter the region only between the plates by approaching from the sides over a limited range of angles, which becomes more limited as d decreases. In contrast, particles can reach the outer edges of the plates from any angle. This generates an effective active-depletion force that pushes the two plates together. It is also possible to exploit this shadowing effect by constructing very long walls with a very small aperture in order to preferentially trap particles between the two plates, resulting in a negative (i.e., repulsive) effective force. This opens the possibility that objects with carefully chosen geometries, when placed in an active bath, could experience a crossover from attractive to repulsive forces as their spacing d diminishes, producing a tunable mimic of an interatomic potential.

Ray, Reichhardt, and Olson Reichhardt (2014) also considered the effect of including particle-particle interactions in the dilute limit and found that the attraction between the plates persists but is reduced in magnitude.
Ni, Cohen Stuart, and Bolhuis (2015) studied a similar geometry consisting of two plates and active particles modeled as repulsively interacting colloidal particles whose direction of motion undergoes a gradual rotational diffusion rather than sudden run-and-tumble changes. For a density of $\phi = 0.4$, well below the passive crystallization density of $\phi = 0.9$, they found that the force between the plates has an oscillatory nature, with a net repulsive force. This effect arises due to the formation of a bridge between the two plates composed of a densely packed, partially crystalline cluster of active particles, while in the bulk no clusters are present, as illustrated in Figs. 20(b)–20(e). As seen in Sec. IV.B.2, in interacting active matter systems without walls or obstacles, there is a transition from a liquid state to a phase-separated cluster state when the particle density or activity level is high enough. The walls act as nucleation sites for clusters of active particles even for particle densities well below the clean phase-separated regime. When the nucleated clusters grow large enough, they form a bridge between the two walls and the repulsive interactions between the particles in the cluster produce a net repulsive force between them. When the spacing d between the plates is large enough, the bridge can no longer span the two plates and the net force between the plates is strongly reduced. Oscillations of the force arise from the crystalline ordering of the particles between the plates: due to the finite radius of the particles, certain values of d are commensurate with integer numbers of particle diameters and at these spacings well-ordered crystals can form between the plates, producing a stronger effective plate-plate repulsion. Ni, Cohen Stuart, and Bolhuis (2015) also considered the dilute limit and found an exponential attractive interaction between the walls, similar to that obtained by Ray, Reichhardt, and Olson Reichhardt (2014). The magnitude and range of the force increase with increasing self-propulsion. Ni, Cohen Stuart, and Bolhuis (2015) also observed that the attraction arises due to a reduction of the particle density between the walls.

Similar effects have also been considered for two spherical objects immersed in an active bath (Das et al., 2014; Harder et al., 2014). Here the concept of swim pressure has turned out to be helpful (Takatori, Yan, and Brady, 2014; Smallenburg and Löwen, 2015; Solon, Fily et al., 2015; Solon, Stenhammar et al., 2015; Yan and Brady, 2015). Understanding the wall curvature dependence of the swim pressure gives access to a general theory of depletion in an active bath, so that the analytical Asakura-Oosawa model for a thermal noninteracting bath can be appropriately generalized to the active case (Smallenburg and Löwen, 2015). For example, Harder et al. (2014), using numerical simulations, considered the interactions between large objects immersed in an active bath, as shown in Fig. 21(a), and found that the shape of the objects plays an important role in determining the polarity of the force: as shown in Fig. 21(b), there is an attractive force between two interacting passive disks due to a depletion effect even when the active motor force is null (i.e., $F_a = 0$), while when the disks are active (i.e., $F_a \neq 0$), the force between them becomes repulsive. In this case, the repulsion arises due to the accumulation of active particles in the corner regions between two closely spaced disks. The active particles generate a net outward force that pushes the disks apart. When the disks are inactive, the accumulation of active particles in the corners does not occur. When the large passive particles are rod shaped rather than disk shaped, there is an attractive force between the rods that increases with increasing activity. The case of parallel rods is then similar to the Casimir geometry in the dilute limit where attractive forces arise.

We remark that the basic notion of active depletion is that the presence of obstacles in an active bath causes guided motion of the active particles along the surface of the obstacles, leading to concentration gradients of the bath particles. By contrast, for passive depletion, the obstacles cause gradients by impeding the paths of the bath particles, once the obstacles get close to each other. Ray, Reichhardt, and Olson Reichhardt (2014) provided a clean demonstration of depletion which is purely active, with no passive component. In fact, the active particles have zero size and, therefore, passive depletion must play no role, because zero-size particles cannot be excluded by any obstacle.

There are also many other types of fluctuation-induced force effects that occur in active matter systems and can depend on the shape or flexibility of both the active and passive particles. For example, Parra-Rojas and Soto (2014)
argued that genuine Casimir effects\(^6\) can occur in micro-swimmer suspensions since, due to the discreteness of the particles in suspension, the fluctuations in the system depend on the local particle density.

Adding active particles to an ensemble of passive particles could lead to new routes of rapid self-assembly or tunable self-assembly in which the structures could rapidly disassemble when the activity is reduced. Additionally, many biological systems may be exploiting active fluctuations to bring objects together, such as within or around cells (Machta, Veatch, and Sethna, 2012).

6. Flexible passive particles and polymers

The scaling behavior of polymers or chains under thermal fluctuations has a rich history (de Gennes, 1979). Methods for characterizing polymers include Flory scaling exponents in which the extension \(S\) of a polymer goes as \(S \propto N_m^\nu\), where \(N_m\) is the number of units along the chain (or the molecular weight) and \(\nu\) is the Flory exponent. Since polymers, chains, and elongated structures are common in biological systems, it is interesting to ask how polymers behave in the presence of an active bath rather than a thermal bath.

Kaiser and Löwen (2014) performed two-dimensional simulations of a flexible polymer chain in a bacterial bath in a relatively diluted limit and found that for very long chains the polymer extension follows a two-dimensional Flory scaling. This occurs since the chains are considerably longer than the bacterial running lengths, so the polymers sample the bacterial bath fluctuations only at long time scales, at which the bacteria effectively undergo regular diffusion. When the chains are short, i.e., of the order of the bacterial running length or smaller, the activity becomes important and the chains are expanded or compressed by the bacterial bath.

Harder, Valeriani, and Cacciuto (2014) also performed numerical studies of a chain in an active bath and confirmed the results of de Gennes (1979) in the fully flexible limit. They then added rigidity to the chains and observed a variety of new types of behaviors, including a crumbling transition to a metastable hairpin structure at intermediate activity levels. This is illustrated in Fig. 22, which shows fluctuations between a hairpin configuration and an elongated configuration of the polymer. Protein folding has been a long-standing problem and is generally understood to occur under thermal fluctuation conditions; however, the results of Harder, Valeriani, and Cacciuto (2014) indicate that the behavior of polymers in an active bath can be quite different from that in a thermal bath.

\(6\)When two plates are placed in some form of fluctuating environment, confinement effects can produce an attractive force between them that is known as the Casimir effect (Casimir, 1948; Lamoreaux, 1997; Munday, Capasso, and Parsegian, 2009; Intravaia et al., 2013). As a function of the spacing \(d\) between the plates, Casimir forces typically obey a power law \(F_c \propto d^{-\alpha}\), where \(\alpha > 3\).
Valeriani, and Cacciuto (2014) indicate that folding configurations may be facilitated by the presence of active fluctuations. This suggests that active matter dynamics could play an important role in certain biological functions such as the folding of chains or membranes (Suzuki et al., 2015). Therefore, this is an important direction for future study in active matter systems (Isle-Holder, Elgeti, and Gompper, 2015; Mallory, Valeriani, and Cacciuto, 2015; Shin et al., 2015).

Kaiser et al. (2015) numerically and analytically studied the case of a single chain composed of active particles in the absence of any bath, either thermal or active. They considered a free chain, a chain confined by an external trap, and a chain being dragged by one end, and observed Flory exponents of \(\nu = 0.5, 0, \) and 1, respectively. Here the activity does not change the Flory exponents but it does modify the prefactor of the scaling law. When self-avoidance is added to the model, the equilibrium Flory exponents still appear, but the chain extension becomes nonmonotonic for increasing activity.

V. COMPLEX ENVIRONMENTS

So far we have considered only individual and collective behaviors of active particles moving in homogeneous environments without any physical boundaries. Another avenue of research in active matter systems is the study of the interaction of active particles with physical obstacles and boundaries. On the one hand, such situations are relevant for biological microswimmers moving in many natural habitats, from soil and the guts to culture media such as agar (Berg, 2004). For example, it is a tantalizing possibility that motile biological systems might have evolved specific rules of motion that facilitate navigation through similar complex environments. On the other hand, understanding how to control the motion of artificial active particles through their interaction with complex environments could prove beneficial also for applications, e.g., inside lab-on-a-chip devices or living organisms (Chin, Linder, and Sia, 2007).

This section will therefore focus on the role of boundaries on the swimming properties of microswimmers and nanoswimmers. We first consider how microswimmers interact with a planar wall and explain the basic particle-obstacle interaction mechanisms as well as their modeling (Sec. V.A). We then consider active particles confined within a pore and show how their behavior differs from that of passive particles in similar confined environments (Sec. V.B). Next we consider the effects that emerge when microswimmers interact with various kinds of complex environments (Sec. V.C). Finally, we discuss how microswimmers can be sorted exploiting micro-patterned environments (Sec. V.D).

A. Interaction with a wall

There are various ways in which a microswimmer can interact with an obstacle. The two most important are arguably hydrodynamic and steric interactions, even though other (e.g., electrostatic, depletion) interactions can also occur. The basic concepts have already been introduced in Sec. III for hydrodynamic effects, and in Sec. IV.A for other kinds of particle-particle interactions.

The simplest situation in which an active particle interacts with an object is arguably when it interacts with a planar (vertical) wall; some examples (where hydrodynamic interactions are important) are reproduced in Fig. 10. In this case, there is a basic asymmetry between approaching and leaving the wall: when approaching the boundary, the particle will remain effectively stuck at the wall until its orientation points away from it; when leaving, it will just swim away. This asymmetry leads to a tendency for swimmers to accumulate near confining boundaries, which is not observed for particles at thermodynamic equilibrium. In fact, even if the wall is purely repulsive, there is a large accumulation which would require large attraction strengths for passive particles at equilibrium. This effect has been observed for rods and spheres in a linear channel (Wensink and Löwen, 2008; Elgeti and Gompper, 2009; Volpe et al., 2011; Wysocki, Elgeti, and Gompper, 2015) as well as for bacteria in circular cavities (Vladescu et al., 2014). Chiral active particles, however, have been shown to behave differently, as they can slide along a planar wall using their effective driving torque (van Teeffelen and Löwen, 2008; van Teeffelen, Zimmermann, and Löwen, 2009).

Both steric and hydrodynamic interactions typically lead to an alignment of the active particle such that its self-propulsion is directed along the wall of the obstacle. Steric effects of linear (Wensink and Löwen, 2008) and circle swimmers (van Teeffelen and Löwen, 2008; van Teeffelen, Zimmermann, and Löwen, 2009; Kümmel et al., 2013) with a planar wall can be qualitatively understood using the effective force description introduced in Sec. II.B. When a self-propelled particle hits an obstacle such as a planar wall, the propelling force can be decomposed into two components: one tangential and one normal to the wall. The tangential component leads to sliding along the wall while the normal component is compensated by the steric wall-particle interaction. Numerically, this process can be modeled using reflective boundaries, as shown in Fig. 23 (Volpe, Gigan, and Volpe, 2014), even though more accurate higher-order algorithms are also available (Behringer and Eichhorn, 2011, 2012). Importantly, Elgeti and Gompper (2013) showed that these steric effects are sufficient to produce the accumulation and alignment of particles with a wall, without the need for hydrodynamic interactions.

![FIG. 23. Numerical implementation of reflective boundary conditions. At each time step, (a) the algorithm checks whether a particle has moved inside an obstacle. If this is the case, (b) the boundary of the obstacle is approximated by its tangent \(l \) at the point \(p \) where the particle entered the obstacle and (c) the particle position is reflected on this line. In (b), \(t \) and \(n \) represent the tangential and normal unitary vectors to the surface at point \(p \). Note that the orientation of the particle is not flipped.](image-url)
Hydrodynamic interactions between the active particle and the wall are also an important kind of interaction (although frequently neglected). They give rise to stable wall entrapment so that the motion of microswimmers is mainly along the hard boundary of the obstacle even if, in qualitative difference to steric interactions, the object boundary is convex. This has been seen in experiments and appropriately described by hydrodynamics in Takagi et al. (2014), Schara, Zöttl, and Stark (2015), and Sipos et al. (2015). Furthermore, a crucial difference emerges between the cases of pushers and pullers they uniformly explore the configuration space within the pore, as shown in Fig. 24. Figure 24(a) shows four 10-s trajectories of passive Brownian particles (\(v = 0 \mu \text{m s}^{-1}\); they uniformly explore the configuration space within the pore. Active particles, shown in Figs. 24(b) (\(v = 5 \mu \text{m s}^{-1}\)) and 24(c) (\(v = 10 \mu \text{m s}^{-1}\)), tend to spend more time at the pore boundaries. When a microswimmer encounters a boundary, it keeps on pushing against it and diffusing along the cavity perimeter until the rotational diffusion orients the propulsion of the particle toward the interior of the pore. The chance that the active particle encounters the pore boundary in one of its straight runs increases as its velocity [and thus its persistence length \(L\) given by Eq. (6)] increases. These observations can be made more quantitative by using the particle probability distribution. The histograms on the bottom of Figs. 24(a)–24(c) show a section along a diameter of the pore of the probability distribution of finding the particle at the boundaries: it increases together with the particle velocity. This accumulation has been seen in experiments by Bricard et al. (2015).

The fact that active particles tend to accumulate at the boundaries of a pore is a consequence of their out-of-equilibrium nature. For a passive Brownian particle at thermodynamic equilibrium with its environment, the probability distribution \(p(x, y)\) is connected to the external potential \(U(x, y)\) by the Boltzmann relation \(p(x, y) \propto \exp \left\{ -U(x, y)/k_B T \right\}\). In the case presented in Fig. 24, there are no external forces acting on the particle and, therefore, \(U(x, y)\) and the corresponding Boltzmann distribution are homogeneous, as shown in Fig. 24(a). However, the fact that the distributions in Figs. 24(b) and 24(c) are not homogeneous, despite the homogeneous potential, is a clear deviation from the Boltzmann distribution, i.e., from the behavior of matter at thermodynamic equilibrium.

While the Boltzmann distribution holds for every equilibrium system, a generalized form for the stationary probability distribution characterizing all types of active particles does not exist. However, for some specific classes of active particles analytic solutions can be found, and the traditional Boltzmann equation can also be generalized to some active systems (Schnitzer, 1993; Tailleur and Cates, 2008, 2009; Thüroff, Weber, and Frey, 2013, 2014). The first case is that of noninteracting run-and-tumble particles moving over a one-dimensional, conservative force field \(f(x) = -dU(x)/dx\). It can be shown that, in a close system with no fluxes, run-and-tumble particles will distribute in space with probability (Schnitzer, 1993; Tailleur and Cates, 2008)

\[
p(x) = p(x_0) \frac{D(x_0)}{D(x)} \exp \left[\int_{x_0}^{x} \frac{\mu f(s)}{D(s)} ds \right],
\]

where \(\mu = \gamma^{-1}\) is the particle’s mobility and

\[
D(x) = v^2 \tau - \mu^2 f(x)^2 \tau
\]

is an effective space-dependent diffusion coefficient that is smaller when the magnitude of the external force \(f(x)\) is larger. Taking the limit of a vanishing tumble rate \(\tau\) while keeping the free-space diffusion \(D_0 = v^2 \tau\) finite, a Boltzmann-type distribution is recovered with the effective temperature \(T_{\text{eff}} = D_0/\mu k_B\). In the simple case of a harmonic potential well with stiffness \(k\), i.e., \(U(x) = kx^2/2\),
run-and-tumble particles will be confined in a region $|x| < \tau/\mu k$ with a probability density (Tailleur and Cates, 2009)

$$p(x) = p(0) \left[1 - \left(\frac{\mu k}{v} \right)^2 \right]^{\tau/2 \mu k - 1},$$

(31)

which can be very different from the equilibrium Gaussian shape and, in particular, becomes bimodal for $\tau > 1/(2\mu k)$ with particles accumulating at the edges of the allowed region. These results are exact but valid only for one-dimensional and noninteracting particle systems. For the more generic case of interacting particles in any dimension d, a good approximation can be found in the case of colored Gaussian noise. Calling $U(x)$ the potential energy function of an ensemble of N active particles described by the Nd coordinate vector x, a flux-free stationary probability distribution can be obtained within the unified colored noise approach (Maggi, Marconi et al., 2015; Marconi and Maggi, 2015) and it reads

$$p(x) = \frac{1}{Q} \exp \left[-\frac{U(x)}{D_0} - \frac{\tau |\nabla U(x)|^2}{2D_0} ||| + \tau \nabla U(x) ||| \right],$$

(32)

with Q a normalization factor, $|||$ the Nd-dimensional identity matrix, and $||\cdot||$ representing the absolute value of the determinant. Interestingly, within the same approximation, an analytical expression for the velocity distribution can also be found establishing an explicit link between the mean square velocity and the system’s configuration (Marconi et al., 2015). Again, in the limit of vanishing τ, the distribution reduces to the Boltzmann form for an effective temperature $T_{\text{eff}} = D_0/\mu k$. Contrary to run-and-tumble particles, the one-dimensional case of an external harmonic potential always presents a Gaussian shape although with an effective temperature $T_{\text{eff}} = (D_0/\mu k)^2 (1 + 2\mu k \tau)^{-1}$ that depends on the potential curvature. The coexistence of multiple effective temperatures associated with different curvatures in a two-dimensional external potential landscape has been observed by Maggi et al. (2014).

Recent studies have generalized the results about the dynamics, diffusivity, and density distributions of active particles in circular confined geometries to geometries of general shape (Sandoval and Dagdug, 2014; Fily, Baskaran, and Hagan, 2015). Ezhilan, Alonso-Matilla, and Saintillan (2015) examined the swim pressure in the regions between two planar walls for run-and-tumble swimmers and found that for large widths the pressure obeys the ideal gas law. At lower widths, however, the pressure deviates from the ideal gas law and decreases at the center since the particles spend more time confined near the walls rather than moving in the bulk.

2. Active matter forces and equation of state

When considering active-depletion forces in Sec. IV.C.5, it was shown that active particles can generate (attractive or repulsive) forces between passive plates. This raises the questions of whether such forces depend on the microscopic nature of the interactions of the active particles with the plates and, more generally, of whether an equation of state exists for active particles.

At thermodynamic equilibrium, an ideal gas in a container of volume V can be described by the standard ideal gas equation of state $P = \rho R T$, which relates the pressure P to the temperature T and the number density of gas molecules ρ. As the temperature increases, the pressure experienced by the container walls increases, independent of the nature or shape of the walls. To address the question of what happens to such a relation when the thermal gas particles are replaced by self-propelled active particles, Mallory et al. (2014) performed numerical simulations to extract an equation of state for self-propelled repulsively interacting disks in two- and three-dimensional systems and found a nonmonotonic dependence of the pressure on the temperature. By generalizing to active dynamics the definition of pressure as the trace of the microscopic stress tensor, Takatori, Yan, and Brady (2014) and Yang, Manning, and Marchetti (2014) found that mechanical pressure in active systems can be decomposed as the sum of the usual stress component arising from interparticle interactions and a swim pressure component analogous to kinetic pressure in equilibrium systems. In contrast to equilibrium kinetic pressure, however, where particles speed is solely controlled by temperature, swim pressure depends on the actual average speed of the particles that is indirectly controlled by density and persistence length (Solon, Stenhammar et al., 2015). In the special case where particles are not subject to any external torque, either from other particles or from container walls, an equation of state can be derived (Solon, Stenhammar et al., 2015) connecting pressure to bulk properties that is not sensitive to the details of the particles’ interaction with the wall. It can also be shown that such an equation of state does not exist in the general case where particles are not torque free (Solon, Stenhammar et al., 2015).

Experimentally, equations of state in colloidal systems can be extracted from sedimentation profiles. Palacci et al. (2010) performed experiments with dense sedimenting suspensions of H_2O_2-activated Janus particles, which show a strong change in the sedimentation profile compared to passive systems: after H_2O_2 is added to the solution, the solid phase remains but the gas phase spreads to much higher heights. Ginot et al. (2015) performed sedimentation experiments and simulations for active Janus particles and found that activity strongly alters the standard thermodynamic equation of state; however, it was possible to model these alterations using ideas developed through equilibrium concepts. In the dilute case, there is an activity-dependent effective temperature, while at higher densities, an increase in the activity can be modeled as an effective increased adhesion between equilibrium particles.

3. Collective behaviors in confined geometries

For microscopic matter that is not at thermodynamic equilibrium, collective behaviors can also emerge in confined geometries due to complex interplay with the surrounding fluid. This can lead to the formation of complex patterns, such as vortices (Hernandez-Ortiz, Stoltz, and Graham, 2005; Yang, Manning, and Marchetti, 2014). These behaviors have been experimentally observed for both swimming bacteria (Wioland et al., 2013; Lushi, Wioland, and Goldstein, 2014) and colloidal rollers (Bricard et al., 2015). Similar behaviors
have also been reported for vibrated polar granular disks and rods (Kudrolli et al., 2008; Deseigne et al., 2012).

C. Interaction with obstacles

The interaction of active particles with obstacles within complex environments lends itself to be exploited in a wealth of potential applications. In general, these may take advantage of the fact that the motion of active particles is nonthermal in order to use the features of the environment to perform complex tasks such as the separation, trapping, or sorting of active particles on the basis of their swimming properties. In this section we explore these possibilities; in particular, we consider how active particles can be gathered by wedges (Sec. V.C.1), directed by ratcheted walls (Sec. V.C.2), funneled along patterned channels (Sec. V.C.3), sorted in periodic arrays of obstacles (Sec. V.C.4), and trapped within random environments (Sec. V.C.5).

1. Capture and concentration of active particles

In many applications, it is important to catch groups of autonomously navigating microbes and man-made microswimmers in a controlled way. This can be achieved, for example, by using some obstacles in the shape of wedges. The condition for trapping is a pretty sharp cusp on the length scale of the swimmer extension. For example, Kaiser, Wensink, and Löwen (2012) considered active self-propelled rods interacting with stationary wedges as a function of the wedge angle \(\alpha \), finding three regimes of behavior, whose phase diagram is shown in Fig. 25(a): for small angles, a partial trapping of the active particles occurs [Fig. 25(b) for \(\alpha = 40^\circ \)]; for intermediate angles, complete trapping of the particles occurs [Fig. 25(c) for \(\alpha = 116^\circ \)]; and, for large angles, there is no longer any trapping of the particles [Fig. 25(d) for \(\alpha = 140^\circ \)]. We remark that the trapping by wedges is distinct from carrier motion discussed in Fig. 18 because it is triggered and self-amplified by the strong aligning excluded-volume forces between the rods, while carrier motion already occurs for an ideal gas of swimmers. In a subsequent work, Kaiser et al. (2013) found enhanced trapping when the wedge is moved in certain orientations (see Sec. IV.C.4). This trapping behavior can be enhanced employing a system of multilayered asymmetric barriers (Y.-F. Chen et al., 2015). The self-trapping behavior of active rods was then confirmed in experiments on artificial rodlike swimmers (Restrepo-Pérez et al., 2014) and sperm cells (Guidobaldi et al., 2014).

Galajda et al. (2007) placed swimming bacteria in a confined area containing an array of funnel shapes [Figs. 26(a) and 26(b)] and observed that the bacteria concentrated in the portion of the container toward which the funnel apertures pointed, indicating that the bacteria were undergoing a ratchet motion [Figs. 26(c)–26(e)]. Wan et al. (2008) performed simulations of a simplified model of the system in which the bacteria are treated as run-and-tumble particles that move along any wall they encounter. For small run lengths, the system behaves thermally and no ratchet effect occurs; however, for longer run lengths a ratchet effect emerges and, just as in the experimental case, there is a buildup of simulated bacteria on one side of the container. The simulations also showed a buildup of active particle density in the tips of the funnel barriers. Tailleur and Cates (2009) studied run-and-tumble particles interacting with walls and observed a buildup of particle density along the walls as well as a ratchet effect in the presence of funnel-shaped walls. They found that changing the interaction of the particles with the wall, e.g., by introducing a reflection of the particles from the wall, can destroy the ratchet effect. Galajda et al. (2008) constructed a macroscale version of the ratchet system and observed the same behavior as in the bacterial version, indicating that detailed hydrodynamic interactions with the walls are not solely responsible for the ratchet effect.

2. Ratchet effects and directed motion

 Thermal Brownian particles moving over an asymmetric substrate do not spontaneously drift in one direction (if the spatial average of the force is zero). If, however, an external periodic drive is added, or if the substrate is flashed on and off to create nonequilibrium conditions, a net continuous drift of particles known as a ratchet effect can arise (Reimann, 2002).

Numerous studies of ratchet effects have been performed for a variety of active matter systems in the presence of

FIG. 25. Capturing active particles with a wedge. (a) Phase diagram marking three different collective trapping states of self-propelled rods at a wedge upon variation of the reduced rod packing fraction \(\phi_{\text{rod}} \): no trapping at large apex angle \(\alpha \), complete trapping at medium \(\alpha \), and partial trapping at small \(\alpha \). Phase boundaries are shown for two different values of the area fraction occupied by the wedge \(\phi_{\text{wedge}} \). The region of complete trapping is bounded by a triple point at larger rod concentration beyond which a smooth transition from no trapping to partial trapping occurs. (b)–(d) Snapshots depicting the examples of the three stationary states. From Kaiser, Wensink, and Löwen, 2012.
asymmetric barriers, including swimming eukaryotes (Kantsler et al., 2013), swimming sperm cells (Guidobaldi et al., 2014), active particles moving in corrugated channels (Ai et al., 2013; Pototsky, Hahn, and Stark, 2013; Koumakis, Maggi, and Di Leonardo, 2014; Yariv and Schnitzer, 2014), active polymers (Wan and Jho, 2013), active ellipsoids (Ai and Wu, 2014), crawling cells (Mahmud, Campbell, and Grzybowski, 2009), and systems containing a variety of asymmetric objects with varied swimming strategies (Berdakin et al., 2013; Ghosh et al., 2013; Ai, He, and Zhong, 2014; Potiguar, Farias, and Ferreira, 2014).

Variations of the active ratchet effect include active drift ratchets, in which an external continuous drive is applied to the active particles as they pass through an array of asymmetric obstacles (Volpe et al., 2011; Reichhardt and Olson-Reichhardt, 2013a). There are also chiral ratchet effects that arise for active particles that have an intrinsic swimming asymmetry oriented in either the clockwise or counterclockwise direction (Mijalkov and Volpe, 2013; Reichhardt and Olson-Reichhardt, 2013b). When such particles are placed in an asymmetric substrate, particles with different chiralities move in different directions, permitting the chiral species to be separated. The next step along this research line is to (experimentally) realize substrate geometries to sort chiral active particles on the nanoscale, which could have numerous applications in biological and medical sciences, as seen in more detail in Sec. V.D.

It is also possible to obtain a reversed ratchet effect in which the particles move in the forward ratchet direction for one set of parameters but in the reverse direction for a different set of parameters. Drocco, Olson-Reichhardt, and Reichhardt (2012) demonstrated a reversible ratchet effect for active flocking particles moving through an array of funnel barriers. They simulated a variant of the Vicsek flocking model in which the particles have an additional short-range steric repulsion in order to give the flocks a finite size. In the dilute or high-noise limit, the particles are disordered and ratchet in the forward or normal direction through the funnels. However, for densities or noise levels in the collective or flocking regime, flocks become effectively jammed when they attempt to pass through the funnel due to the incompressibility of the flock, which behaves as a rigid solid. In contrast, a flock approaching the funnel array from the hard flow direction can split in two and lose a portion of its members to the other side of the array, resulting in a net reversed ratchet motion of the particles. Experimental studies of crawling cells also showed that it is possible for one species of cells to ratchet in one direction through an asymmetric environment while another species of cells ratchets in the opposite direction (Mahmud, Campbell, and Grzybowski, 2009).

Koumakis et al. (2013) demonstrated that a ratchet effect can also be induced on passive colloidal particles that jump over asymmetric barriers when pushed by swimming bacteria. As shown in Fig. 27, the escape rate over an asymmetric barrier was found to be higher when the same barrier is approached from the small slope side. By surrounding a target region with asymmetric walls, colloidal particles can accumulate over the target when the high slope sides of the barriers point inside, or clear the target region when higher slopes point outside. This effect can be interpreted in terms of a nonuniform effective temperature (Koumakis, Maggi, and Di Leonardo, 2014). Ghosh et al. (2013) performed numerical simulations of active Janus particles in asymmetric funnel geometries containing additional passive particles and found that even a small number of active particles can induce a directed motion of the passive particles.

The works described in this section indicate that active ratchet effects can be employed in techniques aiming at the separation, mixing, or directed flow of passive particles.

3. Motion rectification in a microchannel

The motion of active particles can be rectified by a patterned microchannel [a recent topical review was given by Ao et al. (2014)]. The inset of Fig. 28(c) shows an example of such a microchannel decorated with a series of asymmetric dents on both its walls. Differently from a group of passive Brownian particles released at time \(t = 0 \) s from position \(x = 0 \) \(\mu m \) which diffuse symmetrically around the initial position [filled histograms in Figs. 28(a)–28(c)], a group of active Brownian particles is funneled by the channel in such a way that an average directed motion is imposed on the particles, as can be seen in the open histograms in Figs. 28(b) and 28(c). The rectification is the more
pronounced the higher the velocity of the active particle. This and similar effects have been proposed to sort microswimmers on the basis of their velocity or size (Hulme et al., 2008; Mijalkov and Volpe, 2013), to trap microswimmers in moving edges (Kaiser et al., 2013), to deliver microscopic cargos to a given location (Koumakis et al., 2013), to convey a strategic advantage in trespassing channels against external biases (Locatelli et al., 2015), and even to control pedestrian flows (Oliveira et al., 2016).

4. Extended landscapes of obstacles

The motion and properties of active particles can also be influenced by the presence of extended potential landscapes or by the presence of obstacles in the environment.

Reichhardt and Olson-Reichhardt (2014b) performed a numerical study of interacting run-and-tumble disks of radius \(R \) moving under a drift force \(F_d \) through an assembly of immobile disks that serve as a disordered landscape of obstacles. This is similar to a system of ordinary charge-stabilized colloidal particles driven with an electric field over an obstacle array, where the transport can be characterized by the average velocity \(\langle v_d \rangle \) of the particles in the direction of the applied drift force. For the passive particles, when no obstacles are present, \(\langle v_d \rangle \) increases linearly with the magnitude \(F_d \) of the drift force, i.e., \(\langle v_d \rangle \propto F_d \), indicating Ohmic behavior where the damping arises from the Stokes flow. When obstacles (or pinning) are present, there can be a finite critical external driving (or depinning threshold) force \(F_c \) required to set the particles in motion, so that \(\langle v_d \rangle = 0 \) when \(F_d < F_c \). Once the particles are moving, \(\langle v_d \rangle \) may increase linearly with \(F_d \) or it may follow a power law \(\langle v_d \rangle \propto F_d^\alpha \). When thermal fluctuations are also present, the true critical depinning threshold is lost due to particle creep, and the velocity follows the form \(\langle V_d \rangle \propto v \exp(-U_p/k_B T) \), where \(v \) is the velocity of the particle in the obstacle-free limit and \(U_p \) is the effective trapping potential created by the disorder. Here the velocity decreases with increasing \(U_p \) or decreasing \(T \), so that increasing the magnitude of the thermal fluctuations always produces a larger drift velocity. Similarly, increasing \(T \) always leads to a larger diffusion of particles in the presence of random disorder. If the fluctuations are active rather than thermal, the velocity can behave very differently. Figure 29(a) shows an image of a system where active particles are moving through an assembly of obstacles. Some plots of \(\langle v_d \rangle \) versus run length \(R_t \) for the same system are shown in Fig. 29(b). At \(R_t = 0 \), most of the particles become trapped and \(\langle v_d \rangle \) is low. As \(R_t \) increases, the fluctuations assume a thermal character and local clogs in the assembly break apart, allowing particles to flow in the drift direction and increasing \(\langle v_d \rangle \). When \(R_t \) is further increased, however, the drift velocity begins to decrease, as shown in Fig. 29(b) by the fact that \(\langle v_d \rangle \) reaches its maximum value near \(R_t = 1 \). The drop in velocity is correlated with an onset of clustering (or phase-separation effect) that occurs in active disk systems for long run lengths or high activity. In the regime of low but finite activity, the particles form a liquid state, so an individual particle is at most

\[\begin{align*}
\text{FIG. 27.} & \quad \text{Observation of particle concentration and depletion by bacteria. Snapshots of particles and bacteria (a) at } t = 0 \text{ (the initial state), where particles are randomly distributed, and (b) at } t = 20 \text{ min, where particle distributions have been strongly affected by bacterial transport over asymmetric barriers. The colloidal particles that are not stuck on the surface are highlighted. Particle distributions averaged over a steady state (c) for colloidal particles that are not stuck on the surface are high-}
\end{align*} \]

\[\begin{align*}
\text{(c) (d)} & \quad \text{affected by bacterial transport over asymmetric barriers. The}
\end{align*} \]

\[\begin{align*}
\text{pronounced the higher the velocity of the active particle. This and similar effects have been proposed to sort microswimmers on the basis of their velocity or size (Hulme et al., 2008; Mijalkov and Volpe, 2013), to trap microswimmers in moving edges (Kaiser et al., 2013), to deliver microscopic cargos to a given location (Koumakis et al., 2013), to convey a strategic advantage in trespassing channels against external biases (Locatelli et al., 2015), and even to control pedestrian flows (Oliveira et al., 2016).}
\end{align*} \]

\[\begin{align*}
\text{4. Extended landscapes of obstacles}
\end{align*} \]

\[\begin{align*}
\text{The motion and properties of active particles can also be influenced by the presence of extended potential landscapes or by the presence of obstacles in the environment.}
\end{align*} \]

\[\begin{align*}
\text{Reichhardt and Olson-Reichhardt (2014b) performed a numerical study of interacting run-and-tumble disks of radius } R \text{ moving under a drift force } F_d \text{ through an assembly of immobile disks that serve as a disordered landscape of obstacles. This is similar to a system of ordinary charge-stabilized colloidal particles driven with an electric field over an obstacle array, where the transport can be characterized by the average velocity } \langle v_d \rangle \text{ of the particles in the direction of the applied drift force. For the passive particles, when no}
\end{align*} \]

\[\begin{align*}
\text{obstacles are present, } \langle v_d \rangle \text{ increases linearly with the magnitude } F_d \text{ of the drift force, i.e., } \langle v_d \rangle \propto F_d, \text{ indicating Ohmic behavior where the damping arises from the Stokes flow. When obstacles (or pinning) are present, there can be a finite critical external driving (or depinning threshold) force } F_c \text{ required to set the particles in motion, so that } \langle v_d \rangle = 0 \text{ when } F_d < F_c. \text{ Once the particles are moving, } \langle v_d \rangle \text{ may increase linearly with } F_d \text{ or it may follow a power law } \langle v_d \rangle \propto F_d^\alpha. \text{ When thermal fluctuations are also present, the true critical depinning threshold is lost due to particle creep, and the velocity follows the form } \langle V_d \rangle \propto v \exp(-U_p/k_B T), \text{ where } v \text{ is the velocity of the particle in the obstacle-free limit and } U_p \text{ is the effective trapping potential created by the disorder. Here the velocity decreases with increasing } U_p \text{ or decreasing } T, \text{ so that increasing the magnitude of the thermal fluctuations always produces a larger drift velocity. Similarly, increasing } T \text{ always leads to a larger diffusion of particles in the presence of random disorder. If the fluctuations are active rather than thermal, the velocity can behave very differently. Figure 29(a) shows an image of a system where active particles are moving through an assembly of obstacles. Some plots of } \langle v_d \rangle \text{ versus run length } R_t \text{ for the same system are shown in Fig. 29(b). At } R_t = 0, \text{ most of the particles become trapped and } \langle v_d \rangle \text{ is low. As } R_t \text{ increases, the fluctuations assume a thermal character and local clogs in the assembly break apart, allowing particles to flow in the drift direction and increasing } \langle v_d \rangle. \text{ When } R_t \text{ is further increased, however, the drift velocity begins to decrease, as shown in Fig. 29(b) by the fact that } \langle v_d \rangle \text{ reaches its maximum value near } R_t = 1. \text{ The drop in velocity is correlated with an onset of clustering (or phase-separation effect) that occurs in active disk systems for long run lengths or high activity. In the regime of low but finite activity, the particles form a liquid state, so an individual particle is at most}
\end{align*} \]

\[\begin{align*}
\text{FIG. 28. Rectification of active Brownian motion in an asymmetric ratchetlike microchannel. The distribution of passive [dark gray (red) histograms] and active [light gray (yellow) histograms] Brownian particles (radius } R = 1 \mu m \text{) released at time } t = 0 \text{ s from position } x = 0 \text{ mm are plotted at times (a) } t = 100, \text{ (b) } t = 500, \text{ and (c) } t = 1000 \text{ s. The higher the active particle velocity, the farther the active particles travel along the channel. Every histogram is calculated using 1000 particle trajectories. A segment of the channel, whose dent is } 10 \mu m \text{ long, is represented by the gray structure in the inset of (c).}
\end{align*} \]
temporarily trapped behind an obstacle before diffusing around it. When the activity level increases and the system enters the phase-separation regime, the formation of clusters of particles makes it possible for an individual obstacle to trap an entire cluster. Further work can be envisaged on this topic; in particular, it would be interesting to determine how the depinning transition is rounded by the particle as well as to study the system’s behavior at finite but large run times.

It is possible to create a random energy landscape for active particles using speckle patterns which can be generated by an optical field (Volpe et al., 2014; Volpe, Volpe, and Gigan, 2014; Pesce et al., 2015). Paoluzzi, Di Leonardo, and Angelani (2014) performed molecular dynamics simulations of swimming bacteria interacting with a speckle pattern. The swimmers are modeled as dumbbell particles and interact through short-range repulsive interactions. A crossover is observed from nontrapping to trapping of the particles as the speckle intensity is increased. Pinçe et al. (2016) demonstrated that the presence of spatial disorder can alter the long-term dynamics in a colloidal active matter system, making it switch between gathering and dispersal of individuals: at equilibrium, colloidal particles always gather at the bottom of any attractive potential. However, under nonequilibrium driving forces in a bacterial bath, the colloids disperse if disorder is added to the potential; the depth of the local roughness in the environment regulates the transition between gathering and dispersal of individuals in the active matter system, thus inspiring novel routes for controlling emerging behaviors far from equilibrium.

Reichhardt and Olson-Reichhardt (2014a) considered an active matter system composed of run-and-tumble repulsive disks in the limit of an infinite run time. Using a periodic system, they found that for a sufficiently large density of active particles, most of the particles become trapped in a single large clump and all dynamical fluctuations in the system vanish. The large clump can still be translating, but all trajectories of all particles are periodic. The transient time required to reach such a state diverges as a power law at the critical particle density, suggesting that this is an example of a nonequilibrium phase transition from a strongly fluctuating state to a dynamically frozen state. Such transitions are known as absorbing phase transitions, and they have been studied experimentally and numerically for actin motion, where the system can transition from a fluctuating state to an ordered spiral state containing almost no fluctuations (Reichhardt and Olson-Reichhardt, 2011; Schaller et al., 2011). Reichhardt and Olson-Reichhardt (2014a) added obstacles to the system of infinitely running particles as illustrated in Fig. 30. These obstacles act as nucleation sites for clusters, as shown in Fig. 30(a). Inside a cluster, particles are swimming against each other and are held in the cluster configuration by steric repulsion. In Fig. 30(d) the particles are colored according to the average y component of the active force, making it clear that the upper half of the cluster is moving downward in opposition to the lower half of the cluster which is moving upward, resulting in a completely pinned cluster. When obstacles are present, clusters can form even for very low
active particle densities. Since the active disks are monodisperse in size, triangular ordering appears inside the cluster, which can lead to faceted crystals, as shown in Fig. 30(d). When the obstacle density is higher, the system reaches the frozen state much more rapidly and the cluster becomes increasingly disordered, as shown in Figs. 30(b) and 30(c). In the absence of obstacles, the dynamically frozen state forms for active disk densities \(\phi > 0.5 \); however, as the obstacle density \(\phi_p \) increases, the density at which the dynamically frozen state appears decreases. Kumar, Ramaswamy, and Sood (2011) considered the large-deviation function of a single polar active particle in a crowded structured environment and Kumar et al. (2014) considered the flocking of active polar objects in a crowded nonmotile background, where the crowdedness is crucial to producing the ordering.

In addition to swimming particles, there have been studies of flocking particles interacting with obstacle arrays. Chepizhko, Altmann, and Peruani (2013) considered a variant of the Vicsek model for self-propelled particles interacting with a heterogeneous environment of obstacles. When a particle interacts with an obstacle, it turns its velocity vector away from the obstacle once it comes within a certain distance from it. There is a stochastic noise term added to the particle alignment direction which affects not only its flocking behavior but also its interaction with the obstacles. In the absence of obstacles, the system reduces to the Vicsek model, in which increasing the magnitude of the noise term results in a transition from a coherent state in which all particles move in the same direction to a disordered state in which the direction of motion is randomized. When obstacles are present, Chepizhko, Altmann, and Peruani (2013) found that the system is disordered when the noise term is small. However, as the noise term increases in magnitude, the system transitions into a state with quasi-long-range order, while for the highest values of noise the system is disordered again. This result indicates that the addition of some noise can induce ordering or coherent motion in an active matter system and can be regarded as an example of producing order through disorder. This effect arises since the noise tends to wash out the effect of the quenched disorder array and to make the particle density more homogeneous; however, when the noise is large enough, the system becomes disordered again.

Another system that has been explored is chiral active particles in random landscapes. Nourhani, Crespi, and Lammert (2015) considered chiral self-propelling particles moving on a periodic potential where they found that particles of different chirality can be separated. They also observed a variety of distinct subclasses of dynamic states in which the particles form orbits that either have a translational propagation or are localized. Another feature of this system is that it is possible to steer particles to arbitrary locations by changing the strength of the substrate. Schirmacher et al. (2015) considered a model of noninteracting particles undergoing circular motion in a random landscape to model electrons in a magnetic field moving through random disorder; however, the same model can be used to represent circularly swimming particles. When the swimming radius decreases, there is a transition from a delocalized to a localized state.

5. Subdiffusion and trapping of microswimmers

Various emergent phenomena have been observed when active particles interact with a disordered environment such as subdiffusion and trapping. Chepizhko and Peruani (2013) considered the diffusion and trapping of active particles in the presence of obstacle arrays using the same flocking model described by Chepizhko, Altmann, and Peruani (2013) (see Sec. IV.C.4). As shown in Fig. 31(a), they studied the system as a function of the turning rate of the particles. They found that the motion is diffusive when the turning rate is small; however, the diffusion constant depends nonmonotonically on the particle density. For high obstacle densities and large turning rates, the obstacles induce particle trapping, producing subdiffusive motion. By exploiting this effect, it could be possible to perform a filtering of active particles using an obstacle array, where a portion of the particles with specific properties would become trapped in the array while other types of particles could diffuse freely across it.

Quint and Gopinathan (2013) studied a swarming model in the presence of static disorder. They observed that even a small amount of disorder can suppress the ordering of the swarm when only aligning interactions are included. However, when additional repulsive forces between particles are added, they found a transition from a collectively moving state to a gaslike state at a finite amount of disorder. This

![Fig. 31. Trapping of active particles. (a) In a system where the particle orientation is affected by the presence of obstacles, spontaneous particle trapping occurs for large values of the turning speed and of the obstacle density. Obstacles are indicated by gray (red) dots while black arrows correspond to active particles. From Chepizhko and Peruani, 2013. (b) Sample trajectory of a self-propelled rod orbiting around a passive sphere. The sphere has diameter 6 \(\mu \text{m} \), the rod length is 2 \(\mu \text{m} \), and its speed is on the order of 20 \(\mu \text{m} \text{s}^{-1} \). From Takagi et al., 2014.](image)
transition resembles a percolation transition; however, the transition occurs at densities well below those at which standard percolation would be expected to appear. Chepizhko and Peruani (2015) also numerically considered swarming particles in heterogeneous media.

Studies of active particles interacting with obstacles are often performed in the limit where hydrodynamic effects can be neglected. Takagi et al. (2014) experimentally studied chemically propelled microrods interacting with large spheres and found that the rods become trapped in circles around the spheres as illustrated in Fig. 31(b). The behavior of the trapped rods can be explained using a model that includes the hydrodynamic interactions between the rod and the surface of the sphere. Spagnolie et al. (2015) performed a numerical and theoretical analysis of the capture of microswimmers interacting with obstacles, showing that the time during which the swimmers are trapped by the obstacles before escaping has a distribution with a long tail. Similar hydrodynamic trapping effects were observed in bacteria swimming near large convex obstacles (Sipos et al., 2015).

D. Sorting of microswimmers

Sorting microswimmers based on their swimming properties (e.g., velocity, angular velocity, and chirality) is of utmost importance for various branches of science and engineering. Genetically engineered bacteria can be sorted based on phenotypic variations of their motion (Berg, 2004). Velocity-based spermatozoa selection can be employed to enhance the success probability in artificial fertilization techniques (Guzick et al., 2001). Considering the intrinsic variability of microfabrication techniques, the efficiency of artificial microswimmers for a specific task, e.g., drug-delivery or bioremediation, can be increased by selecting only those with the most appropriate swimming properties. In this section we explore how complex environments can be used to sort microswimmers based on their swimming style; in particular, we consider static patterns (Sec. V.D.1) and chiral sorting (Sec. V.D.2).

![Diagram of microswimmers sorting](Image)

FIG. 32. Sorting of microswimmers in a periodic environment. (a)–(e) Typical trajectories of self-propelled particles moving through a triangular lattice (lattice constant $L_c = 35 \, \mu m$) of elliptical obstacles when a drift force $F_d = 0.12 \, pN$ is applied along the y direction. The characteristic swimming length is (a) $L = 0$ (Brownian particle, no propulsion), (b) 16, (c) 24, (d) 33, and (e) 83 μm. (f)–(j) Corresponding histograms of the experimentally measured [light gray (red)] and simulated [dark gray (blue)] directions of the particle trajectories as defined by two points in the trajectory separated by 100 μm. The experimental histograms were obtained considering more than 100 trajectories in each case. (k) Measured probability that particles are deflected by more than 30° after a traveling length of 100 μm as a function of L for various imposed drift forces $F_d = 0.06 \pm 0.02$ (diamonds), 0.12 ± 0.05 (squares), and 0.28 ± 0.12 pN (triangles). The solid lines are the results of numerical calculations. From Volpe et al., 2011.
Dholakia, 2003; Huang et al., 2004; Reichhardt and Olson-Reichhardt, 2004), this mechanism relies on the dynamical properties of the microswimmers. These results were also compared with numerical simulations [dark gray (blue) polar histograms in Figs. 32(f)–32(j)], which show good agreement with the experimental data.

With the additional possibility of varying the drift force, these observations can be exploited to spatially separate self-propelled particles with small differences in their individual swimming behavior [Fig. 32(k)]. The sorting mechanism discussed here can be directly applied to other self-propelled objects; in these cases, drift forces can be created, e.g., by electric fields or by a solvent flow through the device.

2. Chiral particle separation

Active particles can also be separated on the basis of their chirality (Mijalkov and Volpe, 2013; Reichhardt and Olson-Reichhardt, 2013b; Ai, He, and Zhong, 2015; Chen and Ai, 2015; Wu, Chen, and Ai, 2015). This is a particularly interesting option because it may provide a better technique to separate levogyre and dextrogyre chiral molecules by chemically coupling them to chiral propellers, sorting the resulting chiral microswimmers, and finally detaching the propellers, as theoretically suggested by Mijalkov and Volpe (2013). This is interesting because often only one specific chirality is needed by the biochemical and pharmaceutical industries (Ahuja, 2011), and separation can hardly be achieved by mechanical means due to the extremely small Reynolds numbers (Marcos, Powers, and Stocker, 2009).

Figure 33 shows a possible approach to sorting active particles based on the sign of their motion chirality in the presence of some chiral patterns in the environment (Mijalkov and Volpe, 2013), such as arrangements of tilted rectangles along circles forming chiral flowers. Two chiral flowers with opposite chiralities are enclosed in a 100-μm-side box where the particles can move freely. At time $t = 0$ s a racemic mixture is placed inside each flower [Fig. 33(a)]. With time passing by, most of the levogyre (dextrogyre) microswimmers escape the right (left) chiral flower, while the ones with the opposite chirality remain trapped. At $t = 1000$ s most of the microswimmers are stably trapped, as can be seen in Fig. 33(c).

Other approaches have also been proposed to separate chiral microswimmers, e.g., periodically patterned channels (Mijalkov and Volpe, 2013; Y. Li et al., 2014; Ai, He, and Zhong, 2015; Ao et al., 2015) and rotary obstacles (Chen and Ai, 2015).

VI. TOWARD THE NANOSCALE

Scaling down microswimmers to the nanoscale and, therefore, implementing effective nanoswimmers is an open technological and scientific challenge (Peplow, 2015). Being successful in this task would be extremely beneficial: it would in fact allow the scaling down of several technologies both increasing their efficiency and decreasing their footprint. The main problem on the way toward the nanoscale is that as the size of an active particle decreases, its motion becomes more random and less directed mainly because of an increase in the particle’s rotational diffusion. In fact, by comparing Eqs. (1) and (2), we can see that, while D_T scales according to R^{-1}, D_R scales according to R^{-3}, so that when we approach nanometric sizes, R_k becomes very short. For instance, for a nanoparticle with hydrodynamic radius $R = 50$ nm, $R_k = 760$ μs. Thus, self-propulsion does not have enough time to alter the way in which a nanoswimmer interacts with its environment; its main effect is, instead, to enhance the particle’s diffusion, generating what has been refereed to as hot Brownian motion (Rings et al., 2010).

Nevertheless, not everything is lost. In fact, different solutions can be brought into play to outbalance the increased rotational diffusion at nanometric swimmers’ sizes, e.g., by exploiting the following:

Taxis: Taxis is the movement of a system in response to an external stimulus such as light or the presence of a chemical plume. For example, nanoswimmers can be designed to respond to the gradient in an external (e.g., chemical, optical, acoustic) field that powers their propulsion mechanism so that a long-term drift appears in their motion as a response to the gradient. The gradient can even counteract the rotational diffusion by inducing alignment of the swimmers. Because of the increased rotational motion at the nanoscale, however,
there exists a size limit of \(\approx 600 \) nm below which tactic strategies (e.g., swim-and-tumble motion) are no longer efficient (Dusenbery, 1997).

Environmental properties: Nanoswimmers can be steered through non-Newtonian media exploiting their interaction with the fine structure of the surrounding media. For example, some screw propellers that have a filament diameter of about 70 nm have been shown to be capable of moving through high-viscosity solutions with velocities comparable to those of larger micropropellers, even though they are so small that Brownian forces suppress their actuation in pure water: when actuated in viscoelastic hyaluronan gels, these nanopropellers appear to have a significant advantage because they are of the same size range as the gel’s mesh size (Schamel et al., 2014).

Swarming effects: Finally, collective effects in the interaction of several nanoswimmers can also lead to controllable directed motion due to short-range coupling of the motion of the individual entities (Saha, Golestanian, and Ramaswamy, 2014).

VII. OUTLOOK AND FUTURE DIRECTIONS

Active particles have the potential to have far-reaching impact on many fields of science and technology. From the fundamental side, their study can shed light on the far-from-equilibrium physics underlying the adaptive and collective behavior of biological entities such as chemotactic bacteria and eukaryotic cells. From the more applied side, they provide options to perform tasks not easily achievable with other available techniques, such as the targeted localization, pickup, and delivery of microscopic and nanoscopic cargoes, e.g., in health care, environmental sustainability, and security.

However, there are still several open challenges that need to be tackled in order to achieve the full scientific and technological potential of microswimmers in real-life settings. In our opinion, the main scientific and technological challenges are the following:

1. to understand more in depth and exploit their behavior in complex and crowded environments,
2. to learn how to engineer emergent behaviors,
3. to identify bio-compatible propulsion mechanisms and energy supplies capable of lasting for the whole particle life cycle, and
4. to scale down their dimensions toward the nanoscale.

These challenges will necessarily take years or decades to be met and will need to involve concerted effort from academy and industry: in fact, although significant research progress has been accomplished over the past decade, the applicability of microswimmers to real-life problems is still in its infancy since current proof-of-concept research efforts on microswimmers and nanoswimmers need to be transformed into larger-scale pilot studies, and eventually into field applications. In all the future envisioned applications, in particular, understanding the physical interaction of microswimmers and nanoswimmers with their complex environment (e.g., tissues in living organisms, microchannels in lab-on-a-chip devices, obstacles and physical barriers in soils) represents an enabling step for the design of autonomous micromachines and nanomachines that can navigate efficiently in realistic conditions of operation.

Concretely, a series of so far unexplored (and potentially extremely interesting) research directions can be identified—going from the most straightforward to the most imaginative as follows:

Addressing fundamental questions: Some fundamental problems are still open and need to be addressed in order for the field to be able to progress. These include, in particular, to understand how self-propelled Janus particles swim and interact, to explore under what conditions can thermodynamic equilibrium concepts be applied to detailed-balance-violating systems such as active matter, and to make synthetic microswimmers that will behave well at high densities avoiding problems with the formation of gas bubbles and fuel starvation.

Time-varying environments: Studying the behavior of microswimmers in time-varying potentials and complex environments is an interesting future direction of both fundamental and applied research.

Colloidal molecules: Formation of colloidal molecules between active particles (or passive particles in an active bath) with matching shapes is an interesting possibility. This has already been explored for the case of passive colloidal particles, e.g., the depletion-driven lock-and-key mechanism presented by Sacanna et al. (2010) and the self-assembly of tunable nanostructures using critical Casimir forces presented by Faber et al. (2013). The concept of passive colloidal molecules (Manoharan, Elsesser, and Pine, 2003; van Blaaderen, 2003; Kraft, Groenewold, and Kegel, 2009) was indeed recently generalized to active colloidal molecules. The latter comprise clusters of either diffusiohydroscopic particles (Soto and Golestanian, 2014, 2015) or tightly bound (Babel, Löwen, and Menzel, 2015) or magnetically attractive microswimmers (Kaiser, Popowa, and Löwen, 2015). In this context some new directions emerge from the possibility of using critical Casimir forces to fine-tune the particle assembly (Hertlein et al., 2008; Paladugu et al., 2016).

Hybrid systems: An interesting possibility is to use a combination of microfabricated and biological elements to generate motion on the nanoscale. For example, Gao et al. (2015) trapped smooth swimming bacteria in micron-sized structures and used their rotating flagella to generate a flow capable of transporting materials along designed trajectories.

Emergent collective organization: Albeit recently some studies have found interesting novel forms of aggregation in crowded suspensions of microswimmers (Buttinoni et al., 2013; Palacci et al., 2013), they still considered only one kind of microswimmer at a time. Nevertheless, we know from recent experiments in robotics (Halloy et al., 2007; Rubenstein, Cornejo, and Nagpal, 2014; Mijalkov et al., 2016; Volpe and Wehr, 2016) and biology (Gravish et al., 2015; Tennenbaum et al., 2016) that complex and robust collective...
behaviors can arise also in the presence of very simple constituent agents. The possibility of translating these results from robotic swarms to microswimmers and exploring how several different kinds of microswimmers can synergistically interact to perform a task is appealing.

Stochastic thermodynamics in active baths: Stochastic thermodynamics is an emergent field of research (Jarzynski, 2011; Seifert, 2012). Until now mostly systems coupled to a thermal bath and, therefore, satisfying Boltzmann statistics have been considered. However, systems satisfying these conditions are limited and, in particular, do not include many systems that are intrinsically far from equilibrium such as living matter, for which fluctuations are expected to be non-Gaussian. For example, biomolecules within the cell are coupled with an active bath due to the presence of molecular motors within the cytoplasm, which leads to striking and largely not yet understood phenomena such as the emergence of anomalous diffusion (Barkai, Garini, and Metzler, 2012). Also, protein folding might be facilitated by the presence of active fluctuations (Harder, Valeriani, and Cacciuto, 2014) and active matter dynamics could play a central role in several biological functions (Mallory, Valeriani, and Cacciuto, 2015; Shin et al., 2015; Suzuki et al., 2015). It is therefore an open and compelling question to assess whether and to what degree stochastic thermodynamics can be applied to systems coupled to active baths (Argun et al., 2016).

Nanoswimmers: Active matter systems have so far been confined to microscopic (or larger) scales. However, with advances in creating artificial swimmers it could be possible to realize active matter systems on much smaller scales. In these regimes, thermal effects will be much more pronounced at room temperature and could mask the effects of the activity as seen in Sec. VI. However, experiments could be performed at lower temperatures and a new field of low-temperature active matter systems could be realized. At these smaller scales new effects may arise such as van der Waals forces, charging, or other fluctuation forces, which can lead to new types of active matter emergent behaviors. In terms of applications, activity on the nanoscale can be useful for creating new methods for self-assembly or pattern formation, changing the nature of fluids on the nanoscale, or serving as the first step to nanoscale probes and machines for medical applications.

Active polymers: The interaction of passive or active polymers with an active bath is a very interesting field. Open questions include how reptation dynamics might change when a chain is active rather than thermal, whether active polymer chains could produce unusual rheological properties, whether entanglement would increase or decrease under different activity levels, what would happen if the polymers were breakable, and whether glassy or jamming behavior can arise in dense active polymer mixtures. Extensions of such studies could be applied to understanding membranes, sheets, or flexible tubes in the presence of active matter baths.

Underdamped active particles: In most active matter systems the swimmers are considered to be moving in an overdamped medium. An alternative area of exploration is to consider cases of active systems where the damping is significantly reduced so that inertial effects can play an important role. One example might be to make active Janus particles that move through a dusty plasma (Morfill and Ivlev, 2009), air, or even a vacuum. In this context, an important class of systems is dusty plasma bilayers governed by effective non-reciprocal wake forces (Ivlev et al., 2015), which under appropriate conditions form self-propelled pairs (Bartnick et al., 2015). Another example is self-propelling microdiodes (Chang et al., 2007; Sharma and Velev, 2015). Examples of questions that could be asked are whether activity-induced clustering transitions remain robust when inertial effects are present, or whether clustering can happen in a vacuum where dissipation occurs only at the particle-particle interaction level. When inertia is present, many nonlinear systems can exhibit a range of collective dynamical behaviors such as solitons, nonlinear waves, and shock phenomena (Infeld and Rowlands, 2000). If the medium is active, then new kinds of active soliton behaviors could occur, as well as new classes of self-propagating waves or shocklike phenomena.

Swimmers in nonviscous fluids: Another question to ask is how artificial swimmers would behave in different kinds of fluids. Such effects could include shear-thickening or shear-thinning fluids. It is also possible to explore anisotropic swimmers moving in a superfluid (Leggett, 1999), where new effects could arise due to the frictionless nature of the flow, as well as the generation of quantized vortex-antivortex couples when the velocity of the active particles is above the superfluid velocity (Bewley, Lathrop, and Sreenivasan, 2006). Possible experiments could be performed using swimmers in liquid helium (Bewley, Lathrop, and Sreenivasan, 2006) or in superfluids created in Bose-Einstein condensates (Madison et al., 2000).

Nonlocal interactions to mimic quantum effects: There have been a variety of efforts to create collective classical systems that mimic quantum phenomena (Couder and Fort, 2006; Bush, 2015). Another future direction for active matter systems is to explore the feasibility of making artificial swimmers that have effective nonlocal interactions generated via coupling or feedback responses, such as by using light fields or arrays of swimming robots with transmitters. For the correct choice of coupling rules, the active matter assembly could mimic the behavior of quantum systems. In this way swarms of swimmers could coordinate to form an effective wave-function-type object.
On a more theoretical side it could be interesting to consider how activity would affect tunneling, interference, and entanglement.

Topological active matter systems on lattices: Recently there has been growing interest in topological effects in both quantum (Ran, Zhang, and Vishwanath, 2009; Hasan and Kane, 2010) and classical systems (Kane and Lubensky, 2014; Paulose, Chen, and Vitelli, 2015), where the behavior at the edge of the system is different from that in the bulk. Active particles moving on various kinds of finite lattices offer a system in which such topological effects could be investigated. For example, the activity could be enhanced at or occur only on the edges of the system. Additionally, in dense active matter systems higher-order topological objects such as dislocations could arise that could have dynamical properties that are significantly different from those of similar objects in purely thermal systems. For active matter on substrates, certain constraints could be imposed by the geometry of the substrate lattice that would allow only certain topological modes to propagate.

Active matter on active substrates: So far, active matter systems have been studied in the absence of a substrate or interacting with rigid substrates. However, in many real-world systems, particularly biological systems, the substrate is flexible rather than rigid, and in some cases the substrate itself is active. Thus, another future direction is understanding how active matter systems couple to flexible environments where the activity could in principle change the environment or cause some form of self-organization to occur. If the substrate itself is active, then some type of resonance could arise when the time scales of the substrate and the active matter match, and it is possible that biological active matter systems could harness the activity of a coupled system to enhance certain functions.

ACKNOWLEDGMENTS

We have greatly benefited from discussions with many colleagues and friends in the last few years. We especially thank Aykut Argun, Ivo Buttini, Agnese Callegari, Frank Cichos, Peer Fisher, Gerhard Gompper, Andreas Kaiser, Felix Kümmel, Mite Mijalkov, Roland Netz, Cynthia J. Olson-Reichhardt, Fernando Peruani, Roberto Piazza, Maurizio Righini, Holger Stark, Borge ten Hagen, Sabareeh K. P. Velu, Jan Wehr, Roland Winkler, and Raphael Wittkowski. C. B. and H. L. acknowledge funding from the Marie Curie Career Integration Grant (MC-CIG) No. PCIG11GA-2012-321726, a Distinguished Young Scientist award of the Turkish Academy of Sciences (TÜBA), and COST Actions No. MP1205, No. IC1208, and No. MP1305.

REFERENCES

Berg, H. C., 2004, E. coli in Motion (Springer-Verlag, Heidelberg, Germany).

Redner, G. S., M. F. Hagan, and A. Baskaran, 2013, “Structure and
Lett. 110, 055701.

and spontaneous symmetry breaking for driven colloids on tri-

19099–19100.

Reichhardt, C., and C. J. Olson-Reichhardt, 2013a, “Active matter

Reichhardt, C., and C. J. Olson-Reichhardt, 2013b, “Dynamics and
separation of circularly moving particles in asymmetrically pat-

transitions and dynamic freezing in running active matter systems,”
Soft Matter 10, 7502–7510.

Reichhardt, C., and C. J. Olson-Reichhardt, 2014b, “Active matter
transport and jamming on disordered landscapes,” Phys. Rev. E 90,
012701.

Reichhardt, C., and C. J. Olson-Reichhardt, 2014c, “Aspects of jamming in
two-dimensional athermal frictionless systems,” Soft Matter 10,
2932–2944.

Reichhardt, C., and C. J. Olson-Reichhardt, 2015, “Active micro-
rheology in active matter systems: Mobility, intermittency, and

and bundling of anchored bacterial flagella,” Soft Matter 8,
4363–4372.

Reimann, P., 2002, “Brownian motors: Noisy transport far from

Restrepo-Pérez, L., L. Soler, C. Martínez-Cisneros, S. Sanchez, and
microfabricated chevron and heart-shaped chips,” Lab Chip 14,
1515–1518.

behavioral model,” ACM Siggraph Computer Graphics 21,
25–34.

vortex array of hydrodynamically entrained sperm cells,” Science
309, 300–303.

Rings, D., R. Schachoff, M. Selmke, F. Cichos, and K. Kroy, 2010,

Rodenburg, B., C.-H. Chen, H. L. Swinney, B. Liu, and H. P. Zhang,

Romanczuk, P., M. Bär, W. Ebeling, B. Lindner, and L. Schimansky-
202, 1–162.

Rubenstein, M., A. Cornejo, and R. Nagpal, 2014, “Programmable

Sacanna, S., W. T. M. Irvine, P. M. Chaikin, and D. J. Pine, 2010,

Saha, S., R. Golestanian, and S. Ramaswamy, 2014, “Clusters, asters,
and collective oscillations in chemotactic colloids,” Phys. Rev. E
89, 062316.

Lett. 99, 058102.

Samin, S., and R. van Roij, 2015, “Self-propulsion mechanism of
Lett. 115, 188305.

Sanchez, S., A. N. Ananth, V. M. Fomin, M. Viehreg, and O. G.
Schmidt, 2011, “Superfast motion of catalytic microjet engines
at physiological temperature,” J. Am. Chem. Soc. 133,
14860–14863.

Sanchez, T., D. T. N. Chen, S. J. DeCamp, M. Heymann, and Z.
Dogenic, 2012, “Spontaneous motion in hierarchically assembled

Schaar, K., A. Zottl, and H. Stark, 2015, “Detention times of microswimmers close to surfaces: Influence of hydrodynamic

Schaller, V., C. Weber, C. Semmrich, E. Frey, and A. R. Bausch,
2010, “Polar patterns of driven filaments,” Nature (London) 467,
73–77.

Schaller, V., C. A. Weber, B. Hammerich, E. Frey, and A. R. Bausch,

Schamel, D., A. G. Mark, J. G. Gibbs, C. Miksch, K. I. Morozov,
A. M. Leshansky, and P. Fischer, 2014, “Nanopropellers and
their actuation in complex viscoelastic media,” ACS Nano 8,
7984–8011.

Schirmacher, W., B. Fuchs, F. Höfling, and T. Franosch, 2015,
“Anomalous magneto-transport in disordered structures: Classical

Schmidt, S., J. van der Gucht, P. M. Biesheuvel, R. Weinkamer, E.
Helfer, and A. Ferré, 2008, “Non-Gaussian curvature distribution
of actin-propelled biomimetic colloid trajectories,” Eur. Biophys. J.
37, 1361–1366.

content/117/2/696].

Schmidt, M. J., 1993, “Theory of continuum random walks and

Schwarz-Linek, J., C. Valeriani, A. Cacciuto, M. E. Cates, D.
separation and rotor self-assembly in active particle suspensions,”

Scheutz, F., 2007, Brownian agents and active particles: Collective
dynamics in the natural and social sciences (Springer-Verlag,
Heidelberg, Germany).

Sharma, R., and O. D. Velev, 2015, “Remote steering of self-
propelling microcircuits by modulated electric field,” Adv. Funct.
Mater. 25, 5512–5519.

kinematic description of the trajectories of listeria monocytogenes
8229–8234.

Shin, J., A. G. Cherstvy, W. K. Kim, and R. Metzler, 2015,
“Facilitation of polymer looping and giant polymer diffusivity
in crowded solutions of active particles,” New J. Phys. 17,
113008.

