Structure of Nb₂O₅-NaPO₃ glasses by X-ray and neutron diffraction

U. Hoppe ^{a,*}, L. Delevoye ^b, L. Montagne ^b, M. v. Zimmermann ^c, A. C. Hannon ^d

^a Institut für Physik, Universität Rostock, 18051 Rostock, Germany

^b UCCS – Unité de Catalyse et Chimie du Solide – UMR CNRS 8181, Ecole Nationale Supérieure de Chimie de Lille, Université des Sciences et Technologies de Lille, BP 108, 59652 Villeneuve d'Ascq cedex, France

^c Hamburger Synchrotronstrahlungslabor HASYLAB am Deutschen Elektronen-Synchrotron DESY, 22607 Hamburg, Germany

^d ISIS facility, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom

Main facets of the structure of mixed Nb₂O₅-NaPO₃ glasses were already studied thoroughly by spectroscopic methods such as ³¹P, ¹⁷O, ⁹³Nb nuclear magnetic resonance (NMR), O1s X-ray photoelectron spectroscopy and Raman scattering. Here, X-ray and neutron diffraction results are added to extract the detailed numbers and lengths of the first-neighbor bonds. The P–O distances of the PO₄ units change in accordance with the rupture of P–O–P bridges due to Nb₂O₅ additions as it was determined by ³¹P NMR. The NbO₆ units possess three different lengths of Nb–O bonds for glasses of Nb₂O₅ content up to 20 mol%. The changes of these Nb–O bonds for glasses of greater Nb₂O₅ contents result from an increasing number of distances in Nb–O–Nb bridges. The medium-range order of the glasses is compared with that of GeO₂-KPO₃ glasses of equivalent compositions. A characteristic length of ~1.0 nm was determined from the first sharp diffraction peak for the GeO₂-KPO₃ glasses which was interpreted with the micro-segregation into K phosphate and Ge phosphate sub-networks. Similar features are widely missing for the Nb₂O₅-NaPO₃ glasses. The different behavior is attributed to the different valence and structural variability of the Ge⁴⁺ and Nb⁵⁺ ions.