Spectral properties of an optical polaron in a magnetic field
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An optical polaron, which is exposed to a homogeneous magnetic field, is considered. Making
use of functional analytical methods of Frohlich [Fortschr. Phys. 22, 159 (1974)], it is proved
that the ground-state energy, the magnetic polaron mass, and the number of virtual phonons in
the ground state are analytical functions of the electron—phonon coupling parameter and the
magnetic field strength. Consequently, a discontinuous stripping transition, which was claimed
recently by several authors, does not exist. In fact, some authors have stated that the
discontinuities they encounter might indeed be artifacts due to the approximation. The
spectrum of the momentum-decomposed Frohlich Hamiltonian is analyzed; bounds and
smoothness properties of the ground state and the discrete excited states are derived. All

results hold also for lower spatial dimensions.

I.INTRODUCTION AND STATEMENT OF THE PROBLEM

In the present paper we discuss spectral properties of the
momentum-decomposed Frohlich Hamiltonian of an opti-
cal polaron in a constant uniform magnetic field.

The standard (three-dimensional) polaron model is de-
fined by the well-known Hamiltonian H,, proposed by
Frohlich, Pelzer, and Zienau,'

H.= Eln; (p + le]A(X))* + f d3k fiw(K)ay," a,
+Jd3ka”2(g(k)ake""‘+H.c.) n
with ,
o(k) =wy>0 2)
and

g(k) = fiwy(#/2mw,) 4 (4m) "2 (2m) =32k | !
EL4
=Qlk |~ (3)
Here, m, x, p are the mass, the position, and momentum
operator of the (spinless) electron; k, (k) are the wave
vector and frequency of the phonons (i.e., spinless bosons);
g(k) is the electron-phonon coupling, @ being the dimen-
sionless electron—phonon coupling parameter, and |e| the
elementary charge. As usual, we set henceforth #i = w, = m
= |e| = 1 and keep @ and B as the only parameters. Let the
magnetic field B = (0,0,B), B>0, be along the x; axis.
Then, in the Landau gauge, the vector potential A may be
written as A(x) = (0,Bx,,0).
In the case of free optical polarons (B = 0), the analyti-
cal properties of the ground-state energy were unclear for a
long time, until Spohn? applied the beautiful functional ana-
lytical work of Frohlich® directly to prove the analyticity of
the ground-state energy and the polaron mass as a function
of the coupling parameter. In this paper, we want to genera-
lize this result to arbitrary magnetic fields. Making use of
operator methods developed by Frohlich,® we do show that
the ground-state energy, the ground-state wave function,
and expectation values of the ground state as well as the
magnetic polaron mass are analytical functions in the cou-
pling parameter a and the magnetic field strength B (B> 0).
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The same holds true for the energies and wave functions of
the momentum-decomposed discrete excited states, i.e., the
Landau levels below the one-phonon continuum.

This paper represents the first rigorous study of analyti-
cal properties in optical polaron systems for arbitrary cou-
pling and arbitrary magnetic field strength at zero tempera-
ture. Only for very small a, Alvarez-Estrada® has
established analytical properties by using several perturba-
tion approaches. We note that Gerlach and the author have
proved in a previous work® under rather general conditions
that the (formal) free energy of an acoustical or optical po-
laron system, exposed to a homogeneous magnetic field, is
analytic in the temperature 7 (0 < T < « ), coupling param-
eter a, and magnetic field strength B (0 < B). But the limit
T -0 was not studied there.

The most important consequence of our results con-
cerns a so-called stripping transition, which was first studied
by Peeters and Devreese.%” In a series of papers, Peeters and
Devreese have calculated the ground-state energy,®’ the po-
laron mass,”® the polaron radius® as well as the number of
virtual phonons in the ground state® and the magnetoabsorp-
tion spectrum'® within the anisotropic Feynman approxima-
tion. They do find nonanalytical behavior of these quantities
at certain critical values of @ and B. They indicate that this
might be an artifact of their approximation. We note that
Gorshkov, Zabrodin, Rodriguez, and Fedyanin'! have al-
ready questioned these discontinuous transitions. A similar
nonanalytical behavior is found for a two-dimensional po-
laron (see the recent work of Wu Xiaoguang, Peeters, and
Devreese'?). Within the Fock approximation, Lépine and
Matz'® and Lépine'* get discontinuous transitions, too. In
fact, there may be large changes in the polaron quantities as a
function of & or B, but these changes are continuous. All
discontinuities reported in the references quoted above are
artifacts of the the approximations rather than intrinsic
properties of the Frohlich Hamiltonian. In fact, in Refs. 6-9,
Peeters and Devreese carefully stated that the discontinui-
ties they encounter could be artifacts of their approximation.

The basic steps of the proof are as follows: In Sec. II, we
introduce the corresponding momentum decomposed Ham-
iltonian H(Q) whose spectral properties are under study.
Two different cutoffs are successively introduced which
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clearly have to be removed later: a UV cutoff in the coupling
and a lattice cutoff which leads to a discrete phonon momen-
tum space. Then, it is proved that the ground state energy of
the momentum decomposed cutoff Hamiltonian belongs to
the discrete part of the spectrum, if the momentum Q fulfills
a simple inequality. After that, we show that the same result
is also valid if the lattice cutoff is removed. In Sec. III, it is
proved that this result even holds, if the UV cutoff is re-
moved, using a dressing transformation. After having shown
that the ground state of H(Q) is nondegenerate (see Sec.
IV), we derive bounds on the ground state energy of H(Q)
(see Sec. V) that guarantee that the inequality mentioned
above is fulfilled. Since this finally implies that the ground
state of H(Q) is discrete and nondegenerate, we are able to
apply analytic perturbation theory in Sec. VI which estab-
lishes smoothness properties of the ground state and the dis-
crete excited states. Finally, in Sec. VII we give other exam-
ples, to which our methods are applicable.

Il. SPECTRAL PROPERTIES OF THE HAMILTONIAN
WITH UV CUTOFF

First, we perform a Lee-Low-Pines transformation.
Defining

U = exp( — i(Pox, + P5x3)), 4)
where

P=J-af3kkak+ak &)
is the phonon momentum, we obtain

Hp:=U"'HU=G/2 + H,,, + H, (6a)
with

Hop = [ d%aia,, (6b)

H, =a”2fd3k (g(k)ay exp(ik,x,) + H.c.) (6¢c)
and

G = (p;,Bx, + p, — P,,p; — P,). (6d)
Furthermore,

U-'pU=p,—P, i=23. (M

Clearly, H,. does not depend on x, and x,, i.e., p, and p,, now
playing the role of the total momentum [see (7)], are con-
served quantities which may be replaced by ¢ numbers Q,
and Q;. Mathematically, this means that H, admits a direct
integral decomposition as follows:

FIF':'I szdQ3H(Q)9 Q=(0’Q2aQ3)- (8)

Here, H(Q), being the Hamiltonian corresponding to fixed
total momentum @, and @, is given by

H(Q) =H0(Q) +H19 (9a)
Hy(Q) = Hy,, + G(Q)?*/2, (9b)
G(Q) = (p,Bx, + @, — P,,05 — Py). (9¢)

It is well-known that, for B> 0, the spectrum of H(Q) is
independent of Q, (see, e.g., Devreese'®). Nevertheless we
retain the trivial @, dependence.
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For the underlying Hilbert space 77, it is convenient to
take

X =Fe L*R), (10)
where
F= o L2(R*)®" (11)
m=0

is the usual Fock space of the phonons, @ denoting the
symmetrical tensor product. We define UV cutoff Hamilto-
nians H,(Q), H,, by replacing g(k) in (9a) and (6c) by
g (k)=g(k)-0(r — k), 0 <r < . Then, according to a re-
sult of Nelson,'® we may state: For all €> 0 there exists a
number b(7,€) < « such that

| H 1 9| <€l Hop ¥l + b || 1| <ell Ho(Q) ]| + b |1,
for all |¢)eD (Ho(Q)). (12)

Clearly, H,(Q) is self-adjoint and bounded from below.
Consequently, the Kato—Rellich theorem'” ensures us that
H,_(Q) is self-adjoint and bounded from below.

Now we introduce a second cutoff: We replace the
phonon momentum space R by amomentum lattice I, (see
Refs. 3 and 18 for a detailed discussion),

rd = {kGR3lk} = nj/Ad’ nJGZ,

Ay =2ApAeR™, j=12,3}. (13)
To each keR? we associate a k| €T’ ;, namely,
k|g = (ny,non3) /Ay m; = (kiA,), (14)
where
(@)= largest in.teger<a, ifa<O,
smallest integer>a, if a>0.

The continuum limit is obtained by taking the limit d— oo.
We now define a subspace S, C L ?(R®) of step functions,

feS, & flk) = flk[,). (15)

For geL *(R?) let g|,; denote the orthogonal projection of g
onto S,. We need some further definitions,

F,= ?Osd@'"’ (16)

ri=( & s®oF, (17
Then we have

F=F,eF}. (18)

We introduce the d cutoff in the Hamiltonian in the follow-
ing way:

H,(Q)=Hy, +H,,, (19)
p2
H,, =fd3kak+ak +-2‘—
Bx, + Q,— P,|,)? — P,|)?
+( 1 QZ 2|d) + (QS 3|d) , (20)
2 2
Hy, = amf‘ﬂk((g,(k)ld exp(ik,|,°x,)a, + H.c.),
(21)
where now
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P, =fd3k K| 05 a,.

One easily verifies that (12) remains true for the new d cut-
off Hamiltonian H,,, (Q). Consequently, H, (Q) is self-ad-
joint and bounded from below, too. Let E(,Q), E(d,r,Q) be
the ground-state energy of the Hamiltonians

H,(Q), H,(Q).
Lemma 2. 1: Suppose that the momentum Q is such that

inf (E (r,d Q — (0,k3,k3)) + 1 — E(r,d,Q))=A(r,d,Q) > 0.
k

(22)
Then the interval [E(r,d,Q),E(r,d,Q) + A(r,d,Q)[ be-
longs to the discrete part of spec(H,, (Q) | F, ® L *(R)),

where | denotes (as usual) the restriction.
Proof: First, we define a new subspace JC .S, by

feJe flk)=0, forlk|,>r+43/A,. (23)
Moreover, let T', = {kel,||k|<7 + 3/A,} and
W= ; Jor, WLE( ; J1©”'),
m=0 m=1
Wi=w @W. (24)

Clearly, F;, = We W'and H,, (Q), H,,, leave Winvariant.

Weconsider (¢ — H,,) ™' } We L*(R).Since H,,, isa
Kato potential with respect to H,, the following von Neu-
mann resolvent expansion converges in norm:

(d—H,) '= (19'-H0d)_1(i [Hldr(ﬂ—HOd)_l]n)'
n=0
(25)

For Re ¢ sufficiently small, the second factor of (25) defines
a bounded operator. According to Glimm and Jaffe'8 there
exists an isomorphism between J and the square summable
complex functions of the momentum lattice ', consisting of
afinite number of lattice vectors. Hence the eigenvalue prob-
lem of H,, | W® L*(R) is completely solvable and the
eigenvalues £, can be numbered by natural numbes 7, where
E,—»x as n—ow. Therefore (see, eg. Ref. 19),
(3 —Hy,)™' is compact and, because of (25),
(¢ —H, )" '} WeL*(R) is compact for all Jespec(H,,
| We L*(R)).
In a second step, we estimate infspec(H, (Q)
I W'e L*(R)). Let us consider a vector [y)eW ' ® L 2(R),
which has the form |y) =1[6)(@)|p), where |p)eW
8 L*(R), |0)eW,, |0)={0(k™)), k"= (K',...ky). Let
|6 ) be an eigenstate of the phonon number operator with
eigenvalue N>1 and let |6 ) fulfill

N _~
P|,|0) = Z ¥|,(0), where K|, eT,\T,.

j=1

Then, [[x|| =161 ll¢ || and

{x|H ly) =<¢ |H @ (6016
and therefore

WHL @ = 5 (1) + (9 1Ha (@ = T Okl )ip)010)

i=1

N
>( L+ E(d,r,Q — > (04 4k) l,,)))(x!x)>(1 +inf E(d,r,Q — (0’k2:k3)))<X|X)-

j=1

The same inequalities are valid for vectors which are finite
linear combinations of pairwise orthogonal vectors of the
form [8(k ))®|@ ), NeN. Since these vectors are dense in
W'e L2%(R) we conclude

inf spec(H,,(Q) | W'e L*(R))

> 1 +inf E(d,7,Q — (0,k,,k;)). (26)
k

Third, let f be a positive C = function on R such that
f0) =1, fix) =0if x>A(r,d,Q) > 0. Then we know from
(26),

f(Hdr(Q) _E(d’r’Q)) r W1®L2(]R) EO.

On the other hand, the compactness of (& — H,)~*
' We L*(R) implies that f(H,(Q)— E(d,r,Q))
} We L*(R) is compact.

Since F,@ L*(R) = (We L*(R))e(W*eL?(R)), it
follows that f(H,,(Q) — E(d,r,Q)) | F; ® L*(R) is com-
pact. This immediately implies Lemma 2.1. 0

Now we can proceed along similar lines as Fréhlich does
(see Theorem 2.3 in Ref. 3). The only difference is that our
Hilbert space is F, ® L >(R) (instead of F,) and that in our
case a priori f(H,,(Q) — E(d,r,Q)) | F,® L*(R) is com-
pact, whereas in Ref. 3 the fotal spectrum is discrete. Never-
theless, Frohlich’s proof can directly be mimicked. As a con-
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r

sequence, we arrive at the following theorem, where the d
cutoff is removed and a phonon gap in the spectrum is estab-
lished.

Therorem 2.2: Suppose that the momentum Q is such
that

lI;(le(r,Q - (0’k2:k3)) + 1-— E(’)Q) EA(’,Q) > 0.
(27)
Then the interval [E(r,Q),E(r,Q) + A(~,Q)] belongs
to the discrete part of spec (H,(Q) | F& L*(R)).
lil. REMOVING THE UV CUTOFF

To remove the UV cutoff, we use a canonical transfor-
mation, which was proposed by Gross?® and mathematically
studied by Nelson.!® We define

H,7(Q) =¢"H,(Q)e "7,

where

(28)

T=T,, =fd3k(B,A (K)a, exp(ik,x,) —Hc) (29)

and
Ba(K)=B(k) = —a'?2g, (k)8(k — A) /(2 + k?),
1<Ac<r (30)
H. Ldwen 1500
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A lengthy but straightforward calculation, similar to those
in Refs. 16 and 20, yields

H,T(Q) = Hy(Q) + a'’? J d>k (g, (k)e*™a, + H.c)

+ (D +D%)/2-G®—-DP*G+ 3, (31)
where we have used the abbreviation
L) =jd3kk,8,A (K)exp(ik,x))a,. (32)
Here 2 is a finite self-energy, given by
s = f 4k [|B(K) | + a'/2g* (k) B (k)
+ a'g(k)B*(k)). (33)

We have to estimate each term in (31). As an example, we
discuss the term involving the magnetic field. For all
|¥YeD(H §/*) we have

(¥ (G® + ®*G|¢)|
<2 _Zl |'G:¢|H|¢x¢||

<[|H || C(A) | H opi ¥l CCA | H 5%,
where C(A)—>0as A— .

Hence

|G® + D -G|<C(A)H,. (34)
Estimating the remaining terms in analogy to Ref. 3 (see Sec.
2.2in Ref. 3), it follows that for all € > O there exists a A < o0
such that

|HI(Q) — Hy|<eH, + b(A), (35)

where b(A) is uniform in 7 < o and Q. Mimicking Froh-
lich’s proof (see Theorem 2.4 in Ref. 3) we get the following
theorem.

Theorem 3.1: Let A be fixed and r— .

norm-lim (¢ — H,7(Q)) ' = (8 — HT(Q))™!
exists, where (¢ — H 7(Q)) is the resolvent of a unique s.a.
operator H 7(Q) bounded from below. Here H 7(Q) can be
related to the Hermitian forms induced by (35) by a variant
of Friedrich’s extension theorem (see Nelson'®).

s-lim exp(7,, ) =exp(T_,)

r— co

exists. Therefore

H(Q)=exp(— T ,,)H"(Q)exp(T,,)
is self-adjoint and bounded below. O

Again, we follow Frohlich (Theorem 2.7 in Ref. 3) and
obtain that Theorem 2.2 is even valid in the limit 7 — o, i.e.,
the following lemma.

Lemma 3.2: Let E(Q) denote the ground-state energy
of H(Q). Suppose that the momentum Q is such that

iI:f(E(Q — (0ykpk3)) + 1 — E(Q))=A(Q) >0. (36)

Then the interval [E(Q),E(Q) + A(Q)[ belongs to the
discrete part of spec H(Q).
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IV. NONDEGENERACY OF THE MOMENTUM
DECOMPOSED GROUND STATE

Keeping in mind that we intend to apply a generalized
version of the Perron-Frobenius theorem, it is useful to con-
sider a slightly different cutoff Hamiltonian H ,(Q). (Of
course, the cutoff is removed later.) In doing so, we now
replace in (6c) and (9a) the coupling g(k) by

g, (k)= —g(k)u, (k')
= —g(k)(B(n—k")

+ 0(k* —n)exp(— (k' —n))), 37
where
k'2=k2 + k2. (38)
Note that
g.(k)eL*(R3?), for n< w. (39)

Additionally, for the first component of the phonon Fock
space we now choose the g representation (Schrédinger rep-
resentation) instead of the momentum representation. In
this new representation the Hamiltonians read

H(Q)=Hj+Hy, H} =fd3lb.+b. G,

(40)
1/2
Hiy = (2—"‘) Qfa”lu,, kY
T
XKO(kl(xl_q))(bl +b,"), (41)
where now
G' = (p,Bx, + @, — P5,Q; — P}),
b = (217)_”2‘[dk1ak exp(ik,q), (42)

and
P; =Jd3lk,.b,+b,, i=23, 1= (qkyk;), (43)

and where K,,(x) denotes a strictly positive Bessel function
of imaginary argument. By a canonical transformation,
analogous to that in Sec. III, one proves for all
|@ ),|®YeD(H ) and for & < inf spec H(Q),

lim (@ |(H(Q) —¢)7'|®) = (p|(H'(Q) - £)"|®),

o (44)

where H'(Q) is s.a., bounded below, and has the same spec-
trum as H(Q). Because of (39) the following expansion
converges in norm:

(H,(Q)—2)"!

= (H; =)' S [(= DH, (H) — )~
" (45)
Computing the kernel
(V1@ (Olb, b, |(H,(Q) — &) 7"[5,* +-b,* [0y ® |x),
u,u’eIN,, (46)
we see by inspection of (45) that (46) is strictly positive for

a > 0: With respect to the electron coordinate in the Schro-
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dinger representation (i.e., with fixed positive phonon wave
function), (H § — &) ~'is positivity improving as resolvent
of a harmonic oscillator. With respect to the phonon coordi-
nate, (H{ — ) ! is positivity preserving and it preserves
the support. Furthermore, H }, is positivity preserving with
respect to the electron coordinate because of the positivity of
K,. Moreover, for a suitable choice of m in (45) it can be
achieved that

(¥l @0l b, (— H i (Hs — ) Y7|b,* ---b,*|0)
(47)

Consequently, (H,(Q) — &) is positivity improving in
the chosen representation. Since (46) is monotonically in-
creasing with n, we get with (44) that (H' — ) ' is posi-
tivity improving. From Sec. III we know that under condi-
tion (36) infspec H'(Q) = E(Q) is an eigenvalue of
H'(Q). Therefore (see, e.g., Ref. 19) E(Q) isasimple eigen-
value, or, equivalently, the ground state is nondegenerate.

®|x)>0.

V. BOUNDS ON THE GROUND-STATE ENERGY

Lemma 3. 1: For the ground-state energy £(Q) we have
the bounds

(i) E(Q)<E(0) + Q2%/2, (48)
(i) E(Q)>E(0). (49)

Proof: (i) follows from the fact that E(Q) — Q3/2isa
concave symmetrical function of Q;, since the Hamiltonian
H(Q) — Q3%/2 couples linear to Q,. (ii) We use the same
procedure as in (37) and (40)-(43) transforming now the
third component of the phonon coordinate into the Schro-
dinger representation, i.e.,

k2 =k?+ ki, 1= (k,kyq).

Thereby we obtain new Hamiltonians H . (Q), fiop,, ,
G(Q)*/2, H,,, and the phonon momentum operator P. Be-
cause of Theorem 3.1, it suffices to show (49) for n < . One
easily sees (e.g., by a Dyson expansion) that

exp( — tL)=exp( — t(leop,, +?I,,, + Ef/Z + 62/2))
(50)

is positivity preserving for ¢> 0. Now, we follow an idea of
Gross®! and write

B 12
exp( - £E75)

= (2mt) V2 f dy exp( - %)exp(iy(Q3 —B,)). (51)

Hence, we have, since exp( — iyP;) preserves positivity,

lexp( — 253(Q)Z/Z)exp( —tL) @)
2
27t) V2 | d (—y—)
< (2mt) ) 'y €Xp 2
Xexp(iyE)exp( — )| »
<exp( — t53(0)2/2)exp( —t)|le ),
for |@)eD(H,).

One proceeds by induction to obtain

(52)

1502 J. Math. Phys,, Vol. 29, No. 6, June 1988

|(exp( — 1G5(Q)*/(2K))exp( — 1L /k))* |@)|
<(exp( — tG5(0)%/(2k))exp( — tL /K ||l@ |},  (53)

which—because of the Trotter product formula—implies
finally

llexp( — A, (Q))|@ Y| <llexp( — tH, O)|“llg |- (54)

Hence (49) is established.
From Lemma 5.1 it follows immediately that (36) is
fulfilled, if

Q3<2 (55)
We note that we can prove, using a new functional inte-
gral method developed by Gerlach et al.,?? that the contin-
uum edge of H(Q) begins exactly at the point E(0) + 1

involving scattering states with one real phonon (see Dev-
reese”? for a review). This yields the bound

E(Q)<E(0) + 1. (56)

VI. ANALYTICAL PERTURBATION THEORY

To establish analytical properties in Q, a, and B, we
start from the canonically transformed Hamiltonian
H."(Q)=H,"(Q.\a,B), see (28). Let now Q,a,B be fixed,
where Q; <2, a>0, B>0. We consider small deviations
around these fixed parameters. The Q, dependence is trivial.
Concerning the Q; dependence we have

HrT((O’QZ’QJ +K),\/_(_1‘1B)
= HrT(Q!\[E’B) + K(Q3 - P3 - Q; - ¢3*) + K2/2.

(57)

It is easily seen that P, is form bounded:
|Py|<aH,"(Q a,B) + b, for r<co. (58)
Therefore, the associated operators H 7((0,0,,0;

+ K),J/a,B) are a holomorphic family of s.a. operators of
type (B) ink in the sense of Kato.'” The a dependence can be
treated in a similar way:

H,"(Q\Ja +7.B)=H,"(QJa,B) + yH",.  (59)
The estimations in Ref. 3 used in Sec. III show that H ", is
form bounded with constants independent of r (7< o).

Hence H"(Q,Ja + ¥,B) forms a holomorphic family of
type (B) in the sense of Kato in ¥, too.

The dependence on the magnetic field strength B is
more difficult. We use a scaling transformation

—l/2pl, (60)
(61)

Written in these new operators the resulting Hamiltonian
H,"(Q) has the form

¥=B'?x,, p=B

a,=B%agm, at =B*‘ajn,.

- ~2
B7(Q) = —B‘j +fd3k a3, + B a'?

Xf d’k gz (k)(exp(ik,%)d, + H.c.)
+B3/2(&;+$+)2/2

—BY*%(G-® +®*-G) + 3, (62)
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where G and ® are given as in (8), (32) replacing the old
operators with the new ones and the old quantities S(k), A,
r, Q with

B(k) = —2a''%g,(k)8(k— A)/(2+ Bk?),  (63)
A=B 27, 7=B~'Y% Q=B"'?Q. (64)

Note that the operators X, p, g, , @ fulfill the same commu-
tator relations as x,, p,, @, , @," . Therefore, H,7(Q) has the
same spectrum as H, 7(Q). More properly, the Hamiltonian
H,7(Q) is obtained from H,7(Q) by a canonical transfor-
mation, what is easily seen using Wigner’s theorem (see
Bargmann®*). Now, the B dependence manifests itself main-
ly as simple prefactors before the single parts of the Hamilto-
nian H,7(Q). It is easily seen by developing (63) in its pow-
er series that

HT(Q a,B +e¢)

=B,7(QVa.B) + 3 &G (Qya,B), |el<B,
n=1
(65)

where in the sense of forms

G (Qu/a.B)|<c"(@HT(Qa,B) +b'), for r<w.
(66)

Therefore we can repeat our statement that we are dealing
with a holomorphic family of type (B) in €. It now follows
from standard perturbation theory (see Kato'’) and from
the fact that E(Q) is an isolated simple eigenvalue that the
ground-state energy E(Q) is jointly real analytic in @,?° B,
and Q for @3>0, B>0, Q2 <2. The same holds true for the
energies of the discrete excited states lying in the spectral
interval [ E(0),E(0) + 1[, where we have to exclude possi-
ble degenerate points.?® Furthermore, the associated wave
functions are analytic in ¢, B, and Q. This, in turn, has im-
mediate consequences on expectation values of operators
which are independent of «, B, Q like the number of virtual
phonons or the polaron radius, etc. (see Peeters and Dev-
reese’). Again, all these quantities are analytic in a, B, and
Q. From Lemma 5.1 we know that the ground-state energy
E(a,B) of the original Hamiltonian H is obtained by tak-
ing E(0). Especially, E;(a,B) is analytic in « and B.

Another quantity, which is of interest, is the magnetic
polaron mass. Peeters and Devreese’” have defined parallel
and perpendicular magnetic polaron masses in the aniso-
tropic Feynman approximation. One way to define a parallel
magnetic polaron mass m” a priori without using any ap-
proximation is

J*EQ)
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Another possibility to define a cyclotron mass m* (depend-
ing on @ and B) at weak or intermediate magnetic fields is

E,(0) — E(0) =B/(2m*), (68)
where E,(Q) is the energy of the first excited state, i.e., the

second Landau level. It follows immediately that both
masses m” and m* are analytic in a and B.

67)

1 _
mll=
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VII. EXTENSION TO OTHER PROBLEMS

First, the dispersions and the coupling can be general-
ized to

o(k) = w(k)>w,>0, (69)

2
g(k) = g(k), fd3k'g—‘k—)l—<oo, c>0.  (70)

c+k?
Additionally, performing the scaling transformation (60),
(61), we have to assume that g(k) is representable as a finite
or infinite linear combination of powers k?(peR) in a do-
main of R?. Then, the same proof goes through with two
exceptions: The uniqueness proof of the ground state and
Lemma 5.1 (ii) have to be modified. The condition w,>0
cannot be weakened with our methods, since the gap in the
spectrum, which makes perturbation theory possible, does
not remain. For more singular couplings g(k) one has to
renormalize in a well-known way (see Nelson'®).
Furthermore, the space dimension d is not relevant for
our proof, if we take

lg(k) >~k '~ (71)

Several branches of optical phonons can easily be included in
the proof. Whether or not we consider a discrete k summa-
tion or a k integration has no influence on the phase transi-
tion problem. The methods worked out in Secs. I and III are
applicable, if the unperturbed Hamiltonian with discrete,
cutoff k sums has a compact resolvent, where conserved
components of the total momentum are replaced by C
numbers. For example, the problem of a polaron in an exter-
nal potential ¥(x), where F(x) — o as |x]| - « is tractable.
Another example concerns the polaron in an external uni-
form electric field. Since the resulting Hamiltonian is un-
bounded, it has to be renormalized. We cut off the potential
as follows:

le|Ex,, forx,>L,
0, forx, < L.
Then, all results concerning the ground-state energy, etc.,
hold. Especially, the ground-state energy is analytic in the

coupling parameter a and the electric field strength
E(E>0).

Vix) = { (72)
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