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We discuss spectral properties of a generalized N-site n-electron Peierls-Hubbard system 
and examine the possibility of phase transitions of the ground state. For  N = 2 ,  it is 
proved that no phase transition exists. For  N > 2, the only possibility of a phase transition 
is a crossing of two discrete energy levels corresponding to different symmetries. 

1. Introduction 

In this note, we are concerned with analytical proper- 
ties of generalized finite-site Peierls-Hubbard systems; 
we examine their spectral properties and propose a 
method to test for the existence of a phase transition 
of the ground state. 

The Peierls-Hubbard system, which is under con- 
sideration, describes n electrons on N lattice sites, 
which are coupled to N lattice ions. The lattice is 
taken one-dimensional and with periodic boundary 
conditions. The associated Hamiltonian reads as fol- 
lows 

H = H r  + H v +  HL + Hs  (1) 

where 
2 N 

H T = - -  ~ ~ [T,~ij(Q1 . . . . .  QNlc ; c j , ,+h . c . ] ,  (2) 
cr=l  i , j = l  

N 

H v =  ~ Ui nil ni2, (3) 
i = i  

N 

HL = ~ [�89 ~2 + V(Qi)] + ~ W(Qi,  Qj), (4) 
i = 1  i * j  

Hs = S~ ' f (Q1 . . . . .  QN ; nx, . . . ,  nu). (5) 

In (3) and (5), we defined 

+ 
gila = Ci~ Ci~ (6) 

and 

n i = n i l  + h i 2 .  (7) 

Let us briefly explain the notation and the physics 
contained in the Hamiltonian H. c~ + , c~ are (fermion- 
ic) creation and annihilation operators for the elec- 
trons; i is the site numeration and a the spin index 
for the electrons. P~, Qi are the momentum and posi- 
tion operators of the lattice ions. H r  describes elec- 
tronic hopping processes with transfer energy 
- T~ij(Q1 . . . . .  QN). This transfer energy is taken in a 
generalized form, for it may depend on the lattice 
site, the spin and on the displacements of the oscilla- 
tors. The Hubbard  term H v takes into account the 
Coulomb repulsion U~ of electrons at the same lattice 
site i with different spins. H L describes the lattice ions, 
moving in a generalized potential V(Q~). Additionally 
an ion-ion-interaction is taken into account by 
W(Q~, Q~). In general, v and Wmay  include harmonic 
and non-harmonic contributions to the lattice vibra- 
tions. Finally, H s describes the electron-ion coupling 
in a generalized form, S being the coupling parameter. 
Note that this coupling may be nonlinear in the elec- 
tron density and may be on-site as well as off-site, 
since f (Q~, . . . ,  QN; nl . . . .  , nn) is, in principle, an arbi- 
trary function. Of course the number of electrons is 
conserved. Therefore one may seek solutions corre- 
sponding to fixed electron number n. 

In the literature, frequently the socalled T-U-S-co- 
model of an Peierls-Hubbard system is studied. It is 
a special case of the Hamiltonian H, which is obtained 
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by setting 

QN)_ fT  if (ij) nearest neighbours 

otherwise, 
Ui-U, mi-m, (8) 

V(Q,)=IQL W(Q,, Qj)=0 (9) 

and 
N 

f(Qa . . . . .  Qn; nl, ..., nN)-- ~ ni Q,. (10) 
i = i  

In the adiabatic limit (m--0) one may regard the 
Qi's as parameters and it is known that in this approx- 
imation phase transitions (i.e. nonanalyticities of the 
ground state energy as a function of T, U, S) may 
occur. The lattice configuration of the ground state 
can change from an undistorted state to a distorted 
state, as S increases. We refer to Toyozawa [1], who 
treats the case N = 2, as well as to Schreiber [2] for 
N = 3, and to Takimoto and Toyozawa [3] for N = 4. 
Does this situation change for the physical case when 
the kinetic energy of the lattice is not ignored? 

In the atomic limit ( T - 0 ) ,  on the other hand, one 
may regard the n~'s as parameters. The T-U-S-co-mod- 
el is completely solvable for T -  0 yielding a first order 
phase transition of the ground state which is con- 
nected with a structural charge of the ground state 
from a charge density wave to a spin density wave 
(as U increases). Does this phase transition persist 
for finite T?  

Up to now, these two questions were merely at- 
tacked by numerical calculations. For  very small N, 
e.g. N--2 ,  the T-U-S-m-model can be solved (see e.g. 
Schmidt and Schreiber [4] for numerical results). It 
turns out, that numerically the sharp structure of 
phase transitions vanishes for strictly positive m and 
T. In this paper, we propose a general criterion which 
definitively decides the existence or non-existence of 
phase transitions. In particular, we do prove that for 
N =  2 no phase transition of the ground state exists, 
supporting nicely the numerical results of Schmidt 
and Schreiber [-4]. 

Our result holds not only for the T-U-S-co-model, 
but also for the generalized Hamiltonian (1). Thus 
the effects of a Q-dependent transfer energy, ion-ion- 
interactions and nonlinear off-site couplings, which 
would require a much greater numerical effort, are 
automatically included into our proof. They do not 
change the negative result, concerning the existence 
of phase transitions. 

Furthermore,  our method should be useful for 
larger N, where the numerical procedures become 
more and more complicated (see e.g. Schmidt and 
Schreiber [-5]). 

This paper is organized as follows: Studying spec- 
tral properties of the Hamiltonian H, the phase transi- 
tion problem is reduced to a degeneracy problem in 
Sect. II. In Sect. III, the special case N = 2 is consid- 
ered. It is proved that the ground state is nondegener- 
ate which excludes a phase transition. Finally, in 
Sect. IV, we give an outlook to larger systems (N > 2) 
and conclude our results. 

II. Spectral properties and existence 
of  phase transitions 

In this chapter, we provide a condition for the Hamil- 
tonian (1) to have a purely discrete spectrum. 
Especially, the ground state is discrete in this case. 
This enables us to apply analytical perturbation 
theory in order to prove smoothness properties of 
the ground state. 

Since we are dealing with a finite number of sites, 
the electronic operators, which are representable as 
finite-dimensional matrices, cannot generate a contin- 
uous spectrum. For  arbitrary functions T~ij, V, W and 
f in (2), (4) and (5), however, there may be a continu- 
ous spectrum due to the infinite-dimensional Hilbert 
space of the ions. If, however, the potentials tend to 
infinity for IQ,I ~ ~ ,  such a continuous spectrum is 
not expected. In the following, we shall give a rigorous 
formulation of these facts. 

Firstly, we specify the underlying Hilbert space 
5~, on which H is defined, to the usual product  space 
of ions and electrons 

W = L 2 ( ~ N ) | 1 6 2  M (11) 

where M is the dimension of the electronic space. 
Whether or not we restrict ourselves to fixed particle 
number n (1 _< n-< 2N), bears no consequence for this 
section. Let 

P - ( P 1  . . . . .  PN), Q--(Q1, ..., QN), 
(12) 

n -- (n I . . . . .  nN). 
We assume henceforth ml > 0 for all i=  1, ..., N. After 
a suitable scaling transformation, we may even take 
mi =- 1. 

Consider the Hamiltonian 

H p - H L + H s - I p 2 + G ( Q ,  n) (13) 

where the last equation defines an "effective poten- 
tial" G(Q, n). 

Now, we are able to prove our first statement: 
If G(Q, n) is locally bounded and bounded from below 
by d > - oe and if the assumption 

lim G(Q, n)= oe (for any fixed n) (14) 
iQl~oo 



holds, then the Hamiltonian H e has a purely discrete 
spectrum [6]. 

The proof  is quite analogous to the one of theorem 
XIII.16 of Reed and Simon [7]. We only sketch the 
main steps: Because of (14), there exists, for any posi- 
tive real number c, a ball B such that G(Q, n )>c  if 
Q 6B. Let F~(Q) be the potential that is - c  + d if Q e B 
and zero otherwise. Then we have [8] : 

He >= �89 p2 + c + F~ (Q). (15) 

Since the number of sites is finite, the Hamiltonian 
�89 +/We(Q) has only a finite number of eigenvalues 
which are smaller than - 1. Hence by (15), the number 
of eigenvalues of H e which are smaller than c -  1 is 
finite. As c can be chosen arbitrarily large, we finally 
get that H e has purely discrete spectrum. 

Next, we have to examine the influence of H r  + Hv 
on the discreteness of the spectrum. Since He  depends 
merely on electronic operators, it is a bounded opera- 
tor, i.e. there exists a number C < oo such that 

Hv < C. (16) 

Concerning HT, we assume that H r is form bounded 
with respect to He i.e. there exist numbers A < 1 and 
B < oo such that 

JHrl< h .  He+ B. (17) 

A straight forward calculation shows that (17) is ful- 
filled if 

2LIT(Q)I<=A. G ( Q ) + B  (18) 

for some A < 1, B < oo where L is the number of differ- 
ent index combinations of a, i,j such that T~ij~0. 
Furthermore 

T(Q) = max T~i~(Q) (19) 
a, i , j  

and 

G (Q)-= min G (Q, n). (20) 
n 

Now we show that under the condition (17) the Ham- 
iltonian H has purely discrete spectrum, too. 

Because of (16) and (17), the following von-Neu- 
mann resolvent expansion converges in norm 

(~-- H)-I = ((_ He)-1 ~ [(HT + Hv)( (_  He)- 1]. 

(21) 

and the second factor of the right hand-side of (21) 
defines a bounded operator  for Re ( sufficiently small. 
An equivalent statement (see Reed, Simon [6]) for 
the fact that a Hamiltonian H has purely discrete 
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spectrum, is that its resolvent ( ( - H ) - 1  is compact 
for some (. By our statement above, (( - He)- 1 is com- 
pact for R e (  sufficiently small. Because of (21), 
(~--H)-1 is representable as a product  of a compact 
and a bounded operator  for Re ( sufficiently small. 
Therefore ( ( - - H ) - l  is compact for Re ( sufficiently 
small. Consequently, H has purely discrete spectrum, 
too. 

Let us summarize our result. If co~ is strictly posi- 
tive and if the assumptions (14) and (17) hold, the 
spectrum of H is purely discrete. We remark that (14) 
is not fulfilled, if the system is translational invariant. 
Then one has to separate the conserved total momen- 
tum and to discuss the spectrum of the associated 
momentum-decomposed Hamiltonian with our meth- 
ods. 

Now we turn to analytical perturbation theory 
(see Kato [9]). This theory ensures us that a nonde- 
generate discrete state depends analytically on t~j, 
U~ and S for S > 0, where t~j is an extracted transfer 
parameter: T~ij(Q)=-t~ij.h~ij(Q). To guarantee ana- 
lyticity around S = 0, one has additionally to require 
that there exist numbers C < 1 and D < oo such that 

I f (Q;  n)l < C(HL + Hr) + D. (22) 

Consequently, the whole spectrum of H depends ana- 
lytically on t~j, U~ and S except possible degenerate 
points. Therefore the phase transition problem of the 
ground state is clearly reduced to the degeneration 
problem of the ground state. If the ground state is 
nondegenerate for any t~j, U~ and S, no phase transi- 
tion does occur. 

In the next section, we shall prove that, for N = 2, 
the ground state is unique for any t~ij, U~ and S, if 
the transfer energies -- T~ij(Q) are negative. 

III. The two-site case (N= 2) 

The two-site case represents the simplest nontrivial 
Peierls-Hubbard system. In this section, we are con- 
cerned with the degeneracy problem of the ground 
state for this case. We write the transfer part HT of 
the Hamiltonian H as follows 

2 

H r = -- ~ T~(Q)(c~, c2~ + e L c1~ ). (23) 
o - =  1 

Henceforth, we assume a strictly negative transfer en- 
ergy, i.e. 

T~ (Q) > 0 for any Q, a (24) 

and we restrict ourselves to electron number n=2 .  
The cases n = 1, 3 can be treated in the same manner 
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and are not considered further�9 Then, the electronic 
space is six-dimensional and spanned by the vectors 
I1> . . . . .  16> where 

11> + + = C 1 2  Cl 110>,  12> ---- C~1C~210>, (25) 

13>=2-&(c + c 2 ~ - c ~ 1  + + ci~910>, 
(26) 

14) = 2-~(c~-2 + + c2~ + q l  c~-910>, 

15) =c~2 c]210), 16) =c;~ c~-~ 10). (27) 

Here, 10> is the electronic vacuum. The last two states 
15> and 16> are triplett states with nonvanishing total 
spin, which do not interact with the other states. 
Therefore it suffices to study the spectrum of H in 
the reduced electronic space spanned by I1> . . . .  ,14>. 
H reads as follows: 

H=_HL + A - H o  + F(Q)+ A (28) 

where the last equation defines F(Q). Ho is given by 

N 

H o _= ~ �89 co i Pi 2 (29) 
i=1 

and the operator A is represented in the chosen elec- 
tronic representation (Aij= <il A I J>) as 

( U ~ + S  ~ Q;2 ,0)  0 - a ( Q )  

(U~+S f (  U2 + S~ f (Q; O, 2) - a ( Q )  

(Aifl= - a ( Q )  - a ( Q )  S l f (Q ;  1, 1) 

- b ( Q )  - b ( Q )  0 

with 

a (Q) = 2 - �89 (T 1 (Q) + T2 (Q)), 
(31) 

b(Q) = 2-~(T2 ( Q ) -  T 1 (Q)). 

Henceforth, we additionally assume 

T 2 (Q) > T1 (Q) for any Q (32) 

such that (together with (24)) a(Q) and b(Q) are strict- 
ly positive. 

We remark that the trivial case T 2 (Q) - T 1 (Q) can 
be treated analogously by reducing the matrix A to 
a 3 x 3 matrix, since then the state 14> doesn't interact 
with the other states. Also the cases TE(Q)> T 1 (Q) 
and T2(Q)< TI(Q) are included into the subsequent 
proof. (In the first case the second factor of the right 
hand side of (37) is no longer strictly positive for any 
q, k and l, but nevertheless (33) remains strictly posi- 
tive. The latter case is obtained from the first case 
by an index permutation.) 

Now we turn to the basic question of the unique- 
ness of the ground state which was raised in Sect. II. 

There exists a manageable criterion which guarantees 
that for a given Hamiltonian H the ground state is 
nondegenerate (see e.g. Reed, Simon I-7]): If in a cho- 
sen representation of the Hilbert space ~ the integral 
kernel of the operator exp ( ' -H)  is strictly positive, 
then its ground state is nondegenerate. Furthermore, 
let H =  H 1 + V where V is a multiplication operator 
in the chosen representation (i.e. V has vanishing non- 
diagonal matrix elements in the chosen representa- 
tion). Then, e x p ( - H )  has a strictly positive integral 
kernel, if e x p ( - H 0  has a strictly positive integral 
kernel. For a proof, we again refer to Reed, Simon 
1-7] and to Gerlach, L6wen [10] who applied these 
criteria recently to the polaron problem. 

Utilizing this method for our problem, we firstly 
have to choose the representation�9 For the oscillators 
we choose the position representation (Q-representa- 
tion)�9 As electronic representation we just choose the 
one given by the states I1> . . . .  ,14> in (25) and (26). 
Neglecting all multiplication operators according to 
the criterion above, all we have to do, in order to 
prove the nondegeneracy of the ground state, is to 
show that the integral kernel 

<Yl <Jl exp(-  Ho + B(Q)) li> Ix> (33) 

- b ( Q )  > 

- b ( Q )  

0 

S~f(Q; 1, 1) 

(3o) 

is strictly positive for any y, x, i and j. In (33), B(Q) 
is defined by 

0 0 b,O,) 
0 a(Q) b(Q) 

(BIJ(Q))= a(Q) a(Q) 0 0 

\ b ( Q )  b(Q) 0 0 

(34) 

lY>, Ix> are (formal) eigenstates of Q. To prove the 
positivity of (33), we use the Trotter product formula 

<Yl (Jl e x p ( - n o  + B(Q))1i> Ix> 

= lim ( Y l (Jl (exp ( - Ho/m) exp (B (Q)/m)) m [i) Ix >. (35) 
m-+oo 

We firstly observe that 

<zl <k[ exp(-Ho/m)1/> [q>=6k~" (m/(27zooi)) 

�9 exp(--i~=lm(zi--qi)2/(2ogi)) (36) 



223 

and that 

(zl (kl exp (B(Q)/m)ll) [q) 

= 3 (q - z). (kl ~, (p !)-1 m e (B (q))V [1). 
p=O 

(37) 

The second factor of the right hand side of (36) is 
strictly positive for any z, q and for coi> 0. Since a(Q) 
and b(Q) are strictly positive, we get by an explicit 
computat ion,  that the second factor of the right hand 
side of (37) is strictly positive for any q, k, l, too. 
Therefore, according to the standard Feynman-Kac  
construction of integral kernels, the combinat ion of 
(35), (36) and (37) shows that (33) is strictly positive. 

Consequently, the ground state of H is nondegen- 
erate in the case N = 2. 

We add a final remark. The positivity of (33) im- 
plies that the ground state is strictly positive in the 
chosen representation (see again Reed and Simon 
[7]). Physically this means that the ground state is 
not a pure spin density wave or a pure charge density 
wave but a mixture of all states I1), ..., 14). As indi- 
cated above, this holds only for strictly positive fre- 
quencies coi> 0 and transfer energies T,(Q) > 0. 

IV. The case N >  2, conclusions 

For  N > 2, the method from Sect. I I I  cannot  be used 
directly, even for the simple T-U-S-co-model: In the 
usual electronic representations, where Hv and H s 
acts as multiplication operators,  the corresponding 
matrix A has also negative nondiagonal  matrix ele- 
ments and therefore e x p ( - H )  can no longer have 
a positive kernel in this representation. To prove the 
nondegeneracy of the ground state, one has to find 
another  better representation where exp ( - H )  has a 
strictly positive kernel. We leave this as an unsolved 
problem. 

I t  may, however, happen that the ground state 
energies of the Hamil tonian fixed to the subspace of 
a given symmetry intersect each other. To decide 
whether or not this is connected with a phase transi- 
tion, one has to proceed as follows: In each subspace 
of a given symmetry, one has to find a representation 
such that the kernel of exp ( -  PHP) is strictly positive 
in the restricted Hilbert space. Here P is the projec- 
tion operator  on the subspace of a given symmetry. 
Then the ground state is unique and analytical in 
the subspace of a given symmetry.  The identity theo- 
rem for holomorphic  functions tells us that  a intersec- 
tion of two energy levels of different symmetry is a 
true nonanalyticity, i.e. a phase transition. The cross- 
ing of two noninteracting, discrete energy levels is 

the only mathematical  possibility for a nonanalytical 
ground state energy. 

For  N = n = 3 ,  in the adiabatic approximation,  
there exist phase transitions for the T-U-S-co-model 
(see Schreiber [2]). However,  the calculation of 
Schmidt, Schreiber [11] indicates that the symmetry 
of the ground state doesn' t  change. Therefore, for 
T > 0 and co > 0 no phase transition is expected. 

For  N = n = 4 ,  however, Schmidt and Schreiber 
[11] show that the symmetry of the ground state 
changes, even in a nonadiabatic  calculation. This indi- 
cates that, in this case, a phase transition really takes 
place. 

A final remark is in order concerning finite tem- 
peratures. A phase transition, generated by a possible 
crossing of two discrete energy levels of different sym- 
metries, will vanish. The free energy is analytical in 
all parameters.  It  is the zero temperature  limit which 
may  generate a nonanalyticity. This is in accordance 
with results, proven for discrete electron-phonon 
models (see [12]), and it can be shown in the same 
way as in [12]. 

In conclusion, we have studied spectral properties 
of Peierls-Hubbard systems. We have given sufficient 
conditions such that the spectrum of the associated 
Hamil tonian is purely discrete. The phase transition 
problem is directly connected with a degeneracy prob-  
lem of the ground state. For  N = 2 ,  we have shown 
that the ground state is unique which excludes a phase 
transition. Our result is not limited to the simple T-U-  
S-co-model. It also includes more general transfer en- 
ergies, being for example essential in the Su-Schrieffer- 
Heeger-model  [13], and nonlinear electron-ion cou- 
pling. 
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I am indebted to B, Gerlach for a critical reading of the manuscript. 
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