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Abstract. The variational principle based on the Gibbs-Bogoliubov inequality is
used to map the thermodynamic and structural properties of a charge-polydisperse
colloidal suspension onto those of a polydisperse reference hard-sphere fluid. The
predictions of this mapping are tested by molecular dynamics simulations.

Polydispersity of charge and size is a natural and unavoidable characteristic of charge-
stabilized colloidal suspensions and micellar systems (for a review see, e.g., [1]). Since
the charge carried by the particles is proportional to the area of their surface, charge
polydispersity is larger than the polydispersity of the particle diameters. For spheri-
cal particles to which the present discussion is restricted, size polydispersity may be
conveniently modelled by a hard-sphere (HS) system with a continuous distribution
of diameters &. If one is interested in structural properties, this model is particularly
attractive, since an analytic solution of the Percus—Yevick (PY) closure exists for the
continuous set of pair distribution functions g,,.(v) [2,3]).

In this letter we show that the polydisperse HS fluid is also a useful reference
system for the investigation of the pair structure of charge polydisperse and micellar
fluids. In particular, we show how the charge polydispersity may be related to the
size polydispersity of the underlying HS reference system.

We consider a suspension of colloidal particles with number density p and charges
g; = Z;e distributed according to the rormalized charge distribution function P(Z}).
The mean charge and charge polydispersity p; are defined by

Z= /,;, pP(z)z4dZ {1a)

pz = %(/ﬂm P(Z)(Z - Z)* dZ)llz : (18)

If the van der Waals interactions may be neglected (which is, in particular, the
case when the dielectric permittivities of the particles and the solvent are close), the
familiar DLVO potential [4] between particles  and j may be cast in the Yukawa form:

V(r) = UOEZ%‘?‘ exp [-n("‘“)] = Z,2,U(r) )
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where r = |r; — r;{, K = 1/} is the inverse Debye screening length, due to the counter
ions and added salt, and a and U, are characteristic length and energy scales. The
corresponding units of temperature and density are Uy/kp and a~3. Note that the
strong Coulomb repulsion between colloidal particles prevents them from coming as
close as their diameter, thus masking any size polydispersity.

The monodisperse version of the model (i.e. all Z; equal) has been investigated via
extensive molecular dynamics (MD) simulations by Robbins et al [5]. In the present
work we study the thermodynamic and structural properties of the polydisperse sys-
tem by relating it to a polydisperse HS reference system having the same number
density p and temperature T and diameters distributed according to a normalized
size distribution function Py(¢); the mean diameter & and size polydispersity p, are
defined by relations similar to (1).

The mapping of the polydisperse Yuokawa model (2) onto the polydisperse HS
reference system is conveniently carried out via the Gibbs~-Bogoliubov inequality [6],
which yields an upper bound to the free energy of the system of interest in terms of
the known free energy and the pair structure of the reference system. Using a suitable
parametrization of the reference system {e.g. the diameter of a monodisperse HS fluid)
minimization of the upper bound has led to good estimates of the static properties
of simple liquids [7). The Gibbs—Bogoliubov inequality is easily generalized to the
polydisperse situation of present interest, according to

F;" <."‘:63+ / do f do’ Py(0) Py(o) j d*r g,,.(N2(0) 2(e YU r) (3)

where V is the volume, F** and F§* denote the excess Helmholtz free energies of the
polydisperse Yukawa and of the polydisperse HS systems respectively, while g ,.(r}
ts the pair distribution function for pairs of HS with diameters ¢ and ¢’. The free
energy F§* of the reference HS system may be calculated from a knowledge of the
Ornstein-Zernike direct correlation function c,,.(r) by thermodynamic integration:

X - 1
B kot [ do [ a0 o)) [ avr=1) [@rcoulri R(o0).

)

For explicit calculations, we have used the analytic PY expressions for g,,.(r) {2, 3] and
40+ (71 {p}) [8] in equations (3) and (4). The variational calculation proceeds then as
follows. For a given temperature T, the polydisperse Yukawa system is entirely char-
acterized by the density p and the charge distribution function P(Z). The reference
system, taken at the same temperature T and density p, is then completely specified
by the mapping function Z(c) appearing in equation (3), which associates a charge Z
with a given diameter and vice-versa. This mapping uniquely defines the size proba-
bility density Py(e) = P(Z(c))dZ/do of the HS reference system. The right-hand side
of equation (3) is finally minimized with respect to the set of variational parameters
contained in the mapping function Z(e).
In practice, we have chosen for the latter a simple linear form

Z(e)=Z + agE;—E) (5)

which involves two variational parameters, the slope o and the mean diameter &.
For large polydispersities, more complicated mapping functions, involving additional



Letier to the Edilor 999

variational parameters, may be necessary, The calculations described below were
carried out for a simple box distribution of charges:

P(Z) = {;/(22 -Z) for Z, < 2 < 2, ©)

otherwise .

In view of the linear form of the mapping function (5), the size distribution function
Py(o) is also a box distribution (6), characterized by the variational parameters 7
and @, or alternatively by the minimum and maximum diameters o, and o,, with
o, =5+(F/a)Z,—Z and v = 1,2. Once the free energy F of the charge polydisperse
system has been estimated from (3) for several densities, the (osmotic) pressure p
follows from numerical differentiation of F with respect to p.

In addition to the variational calculations, we have carried out a few MD simula-
tions of the polydisperse Yukawa fluid, in order to test the predictions of the former.
These simulations are similar to those of Dickinson and co-workers for the complete
DLVO potential [9]. The charges of N = 500 particles were sampled uniformly from
the box distribution (6), i.e.

. . IN(Z,-Z )
zj=21+(:+§)(~—2N—1) 1<FEN. (7)

The forces between particles were calculated from the pair potentials {2) and the
equations of motion were integrated using the Verlet algorithm and the standard
constant-temperature constraint [10]. The main cutputs relevant to the present work
were the averaged and charge-averaged pair distribution functions g(r) and gz(r),
defined by

A

g(r) = ;ﬁ<§6(r -1 + rj)> (8a)
N

gz(r) = lef"’ <§Zs‘zjé(" -r:+ ’”j)) . (8%)

The latter yields directly the pressure according to the virial theorem for a charge
polydisperse system

27 o2 [ dU
p:pkBTu?p‘?Z/; drgz(r)gr‘?‘. (9)

Some typical results of the variational calculation are summarized in figures 1
and 2. In figure 1, the optimal values of the parameters 7 and « in equation (5)
are plotted versus the charge polydispersity p,, together with the resulting size poly-
dispersity p, of the HS reference system, and the variational estimate of the free energy
of the polydisperse Yukawa system; these results are shown for a fixed value of the
inverse screening length «. In figure 2, the dependence of the previous quantities on
# is plotted for a fixed value of the charge polydispersity p,. For fixed &, the mean
diameter 7 , and the slope @, which is simply the ratio of polydispersities, pz/p,,
hardly vary with the charge polydispersity p,. Note that, as expected, the size poly-
dispersity that yields the lowest free epergy is considerably smaller than the charge
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Figure 1. The excess free energy Fex in units of Uy (— ~ —) of the charge poly-
disperse system obtained by hard-sphere mapping theory as well as the size poly-
dispersity pe (~ ~ =), @ in units of a {[— » —), o (——) of the HS reference system
versus polydispersity in charge pz. We choose pa® = kgT/Up =1,x=T.
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Figure 2. The excess free energy Fox in units of Up versus x (pz = 0.4041, pa¥ =
kT /Uy = 1). Curves labelled as in figure 1.

polydispersity. As shown in figure 2, the ratio o increases practically linearily with
the screening parameter K. As & — oo, the system is mapped onto a monodisperse
HS gystem with diameter a, 1.e. @ — 0,7 — a. As is apparent from figure 1 and
table 1, the excess free energy and the pressure of the Yukawa fluid decrease with
increasing charge polydispersity pz. This behaviour conirasts with that of a poly-
disperse HS system where these quantities increase with increasing size polydispersity
(if & is kept constant). A possible explanation is that, whereas in a HS system the ex-
cluded volume increases with increasing polydispersity, leading thus to an increase of
the excess thermodynamic properties, in charge polydisperse systems the more highly
charged particles keep apart by surrounding themselves with lower charged particles;
this ‘charge ordering’ favours a lowering of the pressure and of the free energy.

The pressure obtained by differentiating the variational estimate of the free energy
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Table 1. Pressure of a dense charge polydisperse Yukawa Auid (pa® = kg T/Up =1,
x = T) for three diffexent charge polydispersities pz: MD data and ES mapping results

- are compared and, just for completeness, the values of p, 7, o for the corresponding
polydisperse HS system are given. The thearetical data for the pressure are obtained
by differentiating the equation of state.

»/pkeT
Pz Sirmiation Theory HS cla @
0.000G 11.3 12.2 5.2 087 —
0.2887 10.9 i1.8 5.1 0.86 3.65
0.5774 9.34 10.4 4.6 083 3.05

is compared with the ‘exact’ simulation results in table 1. The variational results lie
about 10% above the MD data: part of this discrepancy may be traced back to the PY
approximation for the polydisperse HS properties.
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Figure 3. Comparison of g(r) and gz (7) for a charge polydispersity pz = 0.5774.
Simulation results (4) versus pair correlations of the HS system go{r), gzo (v} (—)-
As In figure 1, we choose pa® = kgTfUg = 1, s = 7.

The PY expression for the partial pair distribution functions g,,.(r) may be used
to calculate the average and charge-averaged pair distribution functions of the HS
reference system, according to

)= | o / " 40’ Py(0)Py(0")g00r(r) (100)
420(r) = zi / " do / " 40’ Py0)Py(o!)B(0) 2 Yg0or(r) . (10B)

These estimates of the corresponding pair distribution functions of the polydisperse
Yukawa fluid are compared with the ‘exact’ MD data in figure 3, for a charge poly-
dispersity p; = 0.5774. Although the two sets of distribution functions oscillate
slightly out of phase, the agreement between MD and variational results is reason-
ably good, thus confirming that the pair structure of the reference HS system, with
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parameters & and p, determined from the Gibbs-Bogoliubov variational principle,
yields a reasonably accurate representation of the pair distribution functions of the
polydisperse Yukawa model for charge stabilized colloidal suspensions.

In summary, we have shown that the Gibbs—Bogpliubov mapping of a charge-
polydisperse system, modelled by the pair potentials (2}, onto a polydisperse HS fluid
yields a reasonably accurate description of the former. Hence, this mapping can be
of great practical importance in view of the availability of analytic expressions for
the pair structure of the HS reference system, within the PY approximation which is
generally accepted to yield reliable results for HS systems. One of the main results is
that the effective size polydispersity of the HS reference fluid is considerably reduced
compared with the charge polydispersity of the charged colloidal system, except in
the weak screening limit.

The polydisperse Yukawa fluid provides a simple model for charge-stabilized col-
loidal suspensions. For high polydispersity, freezing into a colloidal crystal is sup-
pressed in favour of a colloidal glass [8,9]. We have also investigated the glass transi-
tion of the polydisperse model system defined by equation (2) by Brownian dynamics
simulations; these results will be published elsewhere.
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