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Abstract. The variational principle based on the Gibbs-Bogoliubov inequality is 
used to map the thermodynamic and structural properties of a chargrpolydisperse 
colloidal suspensicm onto those of a plydisperse reference --sphere Buid. The 
predictions of this mapping are tested by mol& dynamics simulations. 

Polydispersity of charge and size is a natural and unavoidable characteristic of charge- 
stabilized colloidal suspensions and micellar systems (for a review see, e.g., [l]). Since 
the charge carried by the particles is proportional to the area of their surface, charge 
polydispersity is larger than the polydispersity of the particle diameters. For spheri- 
cal particles to which the present discussion is restricted, size polydispersity may be 
conveniently modelled by a hard-sphere (HS) system with a continuous distribution 
of diameters 6. If one is interested in structural properties, this model is particularly 
attractive, since an analytic solution of the Percus-Yevick (PY) closure exists for the 
continuous set of pair distribution functions goo.,(r) [2,3]. 

In this letter we show that the polydisperse HS fluid is also a useful reference 
system for the investigation of the pair structure of charge polydisperse and micellar 
fluids. In  particular, we show bow the charge polydispersity may be related to the 
size polydispersity of the underlying HS reference system. 

We consider a suspension of colloidal particles with number density p and charges 
pi = Zje distributed according to the normalized charge distribution function P(Z). 
The mean charge and charge polydispersity pz are defined by 

- 
Z = lm P ( 2 ) Z  dZ  (la) 

P ~ = ~ ( ~ ~ P ( Z ) ( Z - ~ ) ~ ~ Z  Z 

If the van der Waals interactions may be neglected (which is, in particular, the 
case when the dielectric permittivities of the particles and the solvent are close), the 
familiar DLVO potential [4] between particles i and j may be cast in the Yukawa form: 
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where r = lri - rjl, )c = 1/X is the inverse Debye screening length, due to the counter 
ions and added salt, and a and U. are characteristic length and energy scales. The 
corresponding units of temperature and density are Uo/kB and Note that the 
strong Coulomb repulsion between colloidal particles prevents them from coming as 
close as their diameter, thus masking any size polydispersity. 

The monodisperse version of the model (i.e. all Zi equal) has been investigated via 
extensive molecular dynamics (MD) simulations by Robbins et al [5]. In the present 
work we study the thermodynamic and structural properties of the polydisperse sys- 
tem by relating it to a polydisperse HS reference system having the same number 
density p and temperature T and diameters distributed according to a normalized 
size distribution function Po(u); the mean diameter F and size polydispersity p, are 
defined by relations similar to (1). 

The mapping of the polydisperse Yukawa model (2) onto the polydisperse HS 
reference system is conveniently carried out via the Gibbs-Bogoliubov inequality [6], 
which yields an upper bound to the free energy of the system of interest in terms of 
the known free energy and the pair structure of the reference system. Using a suitable 
parametrization of the reference system (e.g. the diameter of a monodisperse HS fluid) 
minimization of the upper bound has led to good estimates of the static properties 
of simple liquids [7]. The GibbsBogoliubov inequality is easily generalized to the 
polydisperse situation of present interest, according to 

where V is the volume, Fex and F,e’ denote the excess Helmholtz free energies of the 
polydisperse Yukawa and of the polydisperse HS systems respectively, while go0,(r) 
is the pair distribution function for pairs of HS with diameters U and d .  The free 
energy F,eX of the reference HS system may be calculated from a knowledge of the 
Ornstein-Zernike direct correlation function c,,,,, (r) by thermodynamic integration: 

1 

= kBTp2 1 du lw du‘ Po(u)Po(u’) 1 d7 (7 - 1) 1 d3r co<,(r; { yP,(u)p)) . 
0 

(4) 

For explicit calculations, we have used the analyticPY expressionsfor go0,(r) [2,3] and 
c,,<,(r; { p ) )  [81 in equations (3) and (4). The variational calculation proceeds then as 
follows. For a given temperature T, the polydisperse Yukawa system is entirely char- 
acterized by the density p and the charge distribution function P(2). The reference 
system, taken at the same temperature T and density p, is then completely specified 
by the mapping function Z(u) appearing in equation (3), which associates a charge Z 
with a given diameter and vice-versa. This mapping uniquely defines the size proba- 
bility density P,(u) = P(Z(u))dZ/du of the HS reference system. The right-hand side 
of equation (3) is finally minimized with respect to the set of variational parameters 
contained in the mapping function Z(u).  

In practice, we have chosen for the latter a simple linear form 

- ( U - F )  
Z (u)  = 2 +a- 

U (5) 

which involves two variational parameters, the slope a and the mean diameter if. 
For large polydispersities, more complicated mapping functions, involving additional 
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variational parameters, may be necessary. The calculations described below were 
carried out for a simple box distribution of charges: 

(6) P(2)  = [ ;A% - 21, for i, < z < 2, 
otherwise. 

In view of the linear formof the mapping function (5), the size distribution function 
P,(u) is also a box distribution (6), characterized by the variational parameters T 
and a, or alternatively by the minimum and maximum diameters U,  and u2, with 
uy = ii+ (~/cY)Z,  -z and Y = 1,2. Once the free energy F of the charge polydisperse 
system has been estimated from (3) for several densities, the (osmotic) pressure p 
follows hom numerical differentiation of F with respect to p. 

In addition to the variational calculations, we have carried out a few MD simula- 
tions of the polydisperse Yukawa fluid, in order to test the predictions of the former. 
These simulations are similar to those of Diekinson and co-workers for the complete 
DLVO potential [9]. The charges of N = 500 partides were sampled uniformly from 
the box distribution (6), i.e. 

zj=3,+ (’ J + -  i)(2zi2’) - l < j < N .  (7) 

The forces between particles were calculated from the pair potentials (2) and the 
equations of motion were integrated using the Verlet algorithm and the standard 
constant-temperature constraint [lo]. Tbe main outputs relevant to the present work 
were the averaged and charge-averaged pair distribution functions g(r)  and gz(r ) ,  
defined by 

The latter yields directly the pressure according to the virial theorem for a charge 
polydisperse system 

Some typical results of the variational calculation are summarized in figures 1 
and 2. In figure 1, the optimal values of the parameters Ti and (r in equation (5) 
are plotted versus the charge polydispersity p z ,  together with the resulting size poly- 
dispersity po of the HS reference system, and the variational estimate of the free energy 
of the polydisperse Yukawa system; these results are shown for a fixed value of the 
inverse weening length IC. In figure 2, the dependence of the previous quantities on 
IC is plotted for a fixed value of the charge polydispersity pz. For fixed K ,  the mean 
diameter Zf , and the slope CY, which is simply the ratio of polydispersities, pz/p,, 
hardly vary with the charge polydispersity p z ,  Note that, as expected, the size poly- 
dispersity that yields the lowest free energy is considerably smaller than the charge 
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Figure 1. The excess free energy Fe. in units of Uo (- - -) of the charge poly- 
disperse system obtained by hard-sphere mapping theay ag well as the size poly- 
dispersity p s  (- - -), 0 in units of LI (- , -), a (-) of the RS reference system 
v w u s  polydiswrsity in charge p z .  We &-se pa3 = ksT/Uo = 1, IC = 7. 
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Figure 2. The excess free energy Fe, in units of U0 verru~i 6 (pz = 0.4041, pa3 = 
b T / U o  = 1).  Curves labelled as in figure 1. 

polydispersity. As shown in figure 2, the ratio a increases practically linearily with 
the screening parameter K .  As K + CO, the system is mapped onto a monodisperse 
HS system with diameter a, i.e. a -+ CO,* -+ a. As is apparent from figure 1 and 
table 1, the excess free energy and the pressure of the Yukawa fluid decrease with 
increasing charge polydispersity p z .  This behaviour contrasts with that of a poly- 
disperse HS system where these quantities increase with increasing size polydispersity 
(if is kept constant). A possible explanation is that, whereas in a HS system the ex- 
cluded volume increases with increasing polydispersity, leading thus to an increase of 
the excess thermodynamic properties, in charge polydisperse system the more highly 
charged particles keep apart by surrounding themselves with lower charged particles; 
this 'charge ordering' favours a lowering of the pressure and of the free energy. 

The pressure obtained by differentiating the variational estimate of the free energy 
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Table 1. Pressure of a dense charge polydisperse Yukawa Euid (pa3 = &T/Uo = 1, 
,c = 7) for three d8e-t charge polydispdties p z :  MD data and HS mapping results 
are compared and, just for completeness, the value0 of p ,  'Z, a for the corresponding 
polydisperse HS system are given. The theoretical data for the prrssu~c are obtained 
by Mermtiating the equation of state 

p l p k e T  

PZ Sirmrstion Theory BS 'Z/a a 

0.0003 11.3 12.2 5.2 0.87 - 
0.2887 10.9 11.8 5.1 0.86 3.65 
0.5774 9.34 10.4 4.6 0.83 3.05 

is compared with the 'exact' simulation results in table I .  The variational results lie 
about 10% above the MD data: part of this discrepancy may be traced back to the PY 
approximation for the polydisperse HS properties. 
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Figure 3. Comparison of g(r) and SZ(I) for a charge polydispersity p z  = 0.5774. 
Simulation results (A)  VBSW pair correlations of the BS system go(.), gzo(r) (-). 
As in figwe 1, we choose pa3 = & T / U o  = 1 ,  s = 7. 

The PY expression for the partial pair distribution functions g,,,,(r) may be used 
to calculate the average and charge-averaged pair distribution functions of the HS 
reference system, according to 

These estimates of the corresponding pair distribution functions of the polydisperse 
Yukawa fluid are compared with the 'exact' MD data in figure 3, for a charge poly- 
dispersity pz = 0.5774. Although the two sets of distribution functions oscillate 
slightly out of phase, the agreement between MD and variational results is reason- 
ably good, thus confirming that the pair structure of the reference HS system, with 
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parameters ii and p z  determined from the Gibbs-Bogoliubov variational principle, 
yields a reasonably accurate representation of the pair distribution functions of the 
polydisperse Yuhwa model for charge stabilized colloidal suspensions. 

In summary, we have shown that the Gibbs-Bogoliubov mapping of a charge- 
polydisperse system, modelled by the pair potentials (2), onto a polydisperse HS fluid 
yields a reasonably accurate description of the former. Hence, this mapping can be 
of great practical importance in view of the adabi l i ty  of analytic expressions for 
the pair structure of the HS reference system, within the PY approximation which is 
generally accepted to yield reliable results for HS systems. One of the main results is 
that the effective size polydispersity of the HS reference fluid is considerably reduced 
compared with the charge polydispersity of the charged colloidal system, except in 
the weak screening limit. 

The polydisperse Yukawa fluid provides a simple model for charge-stabilized col- 
loidal suspensions. For high polydispersity, freezing into a colloidal crystal is sup- 
pressed in favour of a colloidal glass [8,9]. We have also investigated the glass transi- 
tion of the polydisperse model system defined by equation (2) by Brownian dynamics 
simulations; these results will be published elsewhere. 

One of us (HL) thanks the Deutsche Forschungsgemeinschaft for financial support. 
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