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Cell theory for the phase diagram
of hard spherocylinders

Abstract A cell theory is proposed to
obtain the full phase diagram of hard
spherocylinders involving isotropic,
nematic, smectic as weltl as plastic and
aligned crystalline phases. Despite its
conceptual and numerical simplicity
this free-volume theory yields the
correct topology of the phase diagram

in semi-quantitative agreement with
recent computer simulations.
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Hard spherocylinders with an orientational degree of free-
dom represent a standard model for liquid crystals [1]
which has the advantage to be simple since the only
parameters characterizing the system are the number den-
sity p and the aspect ratio p = L/D. Here, L is the length of
the cylindrical part and D is the sphere and cylinder
diameter. The density can suitably be scaled by the closed
packed density pep leading to the dimensionless quantity
p* = pipcp, 0 < p* < 1. A further advantage is that, for
p = 0, the weli-known system of (isotropic) spheres is re-
covered and that the opposite limit p — oc leads to the
analytical Omsager solution for the isotropic-nematic
transition. Recently, the full phase diagram in the whole
parameter space spanned by p* and p was obtained by
computer simulation [2}; parts of it were known {rom
former work [3,4]. The resulting phase diagram has
a pretty rich topelogy involving isotropic, nematic, smectic
and plastic crystalline phases as well as aligned crystals
with different stacking sequences.

The aim of this paper is to propose a cell theory for the
full phase diagram of hard spherocylinders. This theory is
similar In spirit to the free-volume approach of ref. [53
where a system of completely aligned spherocylinders was
studied. However, as an essential part of our theory, we
also incorporate the orientational degrees of freedom by
assuming an effective shape of the particles gained from an
orientational average. Our theory gives, for the first time,

a stable plastic crystal (rotator selid) and an AAA-stacked
solid whose stabilities were not investigated in previous
density functional calculations [6]. It has the further ad-
vantage of being conceptionally and numerically simpler
than sophisticated and basically uncontrolled density
functional approximations. Surprisingly, our cell ap-
proach gives the correct topology of the phase diagram
in semi-quantitative agreement with the simulation
data [2].

Let us now briefly describe our theory. In order to
locate phase coexistence we have to know the Helmhoitz
free energy f per particle in any phase which is under
consideration. For the isotropic (fluid) phase we use the
well-known analytical expression of scaled particle theory
{7]. In the remaining phases we approxumnately split the
system into cells containing one particie. The cell size is
chosen in such a way that the particles do not feel the
interaction with their neighbours. In this case, the total
free energy f splits naturally into a part f,, stemming
from the orientational degrees of freedom and another
part f,,, resulting from the motion of the centre-of-mass
coordinate: [ = fi.. + fom-

Calculating f,,, we consider the angular distribution
function g{m) which is rotational symmetric around a fixed
director m,. Here, @ and w, are unit vectors. Particularly,
we use a Maier-Saupe form for glw), ie, glo) =
(1;. 47 explaP,(w-mgl], where Pu(x) = (3x% —1)/2 is the



178 H. Grafet al.

Cell theory for the phase diagram of hard spherocylinders

second Legendre polynomal, 4" is to guarantee correct
normalization [f(w)d*w = 1 and = is a variational para-
meter which is yet to be determined. Then the rotational
free energy per particle reads fr,, = [d’w gl{w)In{g(o)].

The key idea for calculating £, is to map the system
onto completely oriented particles with an effective shape
which in general differs from the original spherocylindric
shape. This effective shape shouid depend on the angular
distribution function g{w) in order to take orientational
correlations between nearest neighbours roughly into ac-
count. We then estimaic the centre-of-mass part f, by
assuming a celi model for the solid part and a scaled-
particle approach for the fluid part of the different phases
[5] in this substitute system. Finally, the choice of effective
shape is optimized by choosing the variational parameter
2 such that the total free energy f becomes minimal with
respect to o.

Let us now describe the mapping in more detail. We
define a mean distance R by averaging over the orienta-
tional distribution function g as

RO,[fD =D72 + L2 [d g{o) o o). {1

Clearly, R is a functionat of ¢ and only depends on the
angle @ defined via cosd = mg-w. The actual effective
shape is now obtained as a Legendre transform of R with
respect to (. Equivalently, the effective shape is the envel-
ope of all planes which have a distance R(0, [ /) from the
centre-of-mass of the spherocylinder and whose normal
forms an angle @ with the director m,. It is instructive to
consider two special cases: For fully aligned spherocylin-
ders, we have g(w) = 6(w —wm,) and the eflective shape
coincides with the original spherocylindric shape. Second,
for an isotropic distribution g(w) = 1/4n. we get R =
D/2 + L/4 = consl. The Legendre transform s again
a sphere of the same radius R.., = D/2 + L/4 and the
resulting effective shape is a sphere of radius Ricun
Note that - by construction — this is the mean radius
Rcan of the spherocylinder which is obviously smaller
than its maximal radivs, R, = D/2 + L/2. Therefore,
the volume correspending to the effective shape i3 in
general smaller than 47R2../3 as resulting from a fully
rotated spherocylinder, hence taking roughly orientation
correlation effects between nearest neighbour Into
account,

We finally propose a variational principle for the free
energy. In the original version of the cell model [8], the
free energy per particle 1s bounded from above by
—kgTIn(V, o) where Vg, is the free cell volume in suitable
units. Hence, the best upper bound is achieved by maxi-
mizing V., within the given constraints of fixed average
density and geometry [9]. Of course, since we invoke
scaled particle approximations and work with an ef-

fective shape, our resulis are no longer true upper bounds
to the exact free energy. As a further approximation,
we carry over the variational principle in order to
optimize the actual free energy values in the different
phases.

Let us now describe the theoretical treatment of the
different phases in more detail. The plastic crystalis a rota-
tor solid with positional but without orientational order.
In this case, the distribution function g(w) is constant. As
we demonstrated above, the effective system consists of
spheres of radius Ro.., and the cell theory reduces to that
ol spheres. The aligned solid with ABC stacking has both
positional and orientational order, exhibiting a distorted
fee-structure. The free-volume ceil is estimated to be
a rhombic dodecahedron corresponding to an undistorted
fecc hard sphere crystal. In the aligned solid with AAA
stacking, on the other hand, the free-volume cell is a hexag-
onal prism. In the smectic-A phase the free energy splits
into a contribution of a one-dimensicnal cell modei for
a rod of length 2R(6 =0, [¢]) and the scaled particle
contribution of a two-dimensional Hquid of hard discs
with diameter 2R(0 = =/2, [¢]). Note that the total free
energy is then minimized with respect to the layer spacing
and the orientation distribution. Finally, the scaled par-
ticle free energy of paralicl hard spherocylinders [10]
of diameter D} =2R(6 = =/2, [¢]) and length L} =
2R(H = 0,11 — D is used to calculate f,,, of the rematic
phase. In order to compensate lack of configuration space
in the cell approach we add a constant of —1.8ksT to

Fig. 1 Phase diagram of hard spherocylinders in the (p—p*)-plane.
The shaded area is the coexistence region calculated within our
theory and the dots are the simulation data £2]. There is an aligned
ABC-solid, an aligned AAA-solid, a plastic crystal (P), an isotropic
fluid (I} and a nematic {N} and smectic-A {SmA) phase. The meaning
of the symbols for the simulation data are: (+) T-ABC transition, (o)
1-P transition, (=) I-SmA transition, (¢} I-N transition, {x) N-SmA
transition, (*) SmA-ABC transition, (a) P-ABC transition
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fim in the plastic crystal and in the aligned solids and
consistently a third of this constant in the smectic-A
phase. A second constant of —2.25k,7T is added in the
nematic phase. These two constants can be regarded as
fitting parameters.

The results for the phase diagram are shown in Fig. 1
in the range of 0 <p <7 and compared against the
simulation data [2]. The theory predicls correctly

all the stabilities of the different phases, exhibits all
qualitative trends and is in semiquantitative agreement
with the exact data although the density jumps are
overestimated.

We are at present calculating the phase diagram of
spherocylinders in an external field coupling to the ori-
entational degrees of freedom. Here, we obtained critical
points between phases of same geometry.
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