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PACS. 82.70.Dd – Colloids.
PACS. 61.20.Ja – Computer simulation of liquid structure.
PACS. 82.70.Gg – Gels and sols.

Abstract. – The dynamics of two-dimensional suspensions of Brownian rods which are driven
by an external torque are explored by computer simulation and instability theory. For increasing
density the system self-organizes into a “T-structured fluid”, where neighbouring rods prefer-
entially orient perpendicular to each other until an overlap density is reached. Then a sharp
jamming transition occurs towards a dynamically blocked state with parallel neighbouring rods.

Colloidal suspensions are excellent model systems for phase transitions in equilibrium
and non-equilibrium [1]. In particular, active particles [2, 3] and systems driven by external
fields [4] show a wealth of non-equilibrium phase transformations. Brownian rotators, as
realized by rodlike colloidal particles which are driven by an external torque, are an important
example with many potential applications as Brownian motors [5] and as mixers in micro- and
nanofluidic devices [6, 7].

In this letter we study the self-organization of an ensemble of interacting driven Brown-
ian rotators. In particular, we study a simple two-dimensional model of mutually repellent
Brownian rods which are driven by a constant external torque using non-equilibrium com-
puter simulations. The motivation to study such a simple model stems from the fact that the
key ingredients can be realized in quite different experimental set-ups: first, suspensions of
non-spherical birefringent particles can be driven by circularly polarized light, as has recently
been demonstrated by Chaikin and coworkers [1,8] and by Bishop and coworkers [9], see also
ref. [10] for the basic physics. The magnitude of the torques acting on these particles is easily
tunable by the applied power. These rotators can also be confined to two dimensions either
by an optical tweezer or in a pendent liquid-gas interface [11]. A second realization are star-
shaped rotators in a Langmuir monolayer whose rotational motion can be micromanipulated
using optical tweezers [12]. Finally, rod-like dust particles [13,14] in a quasi–two-dimensional
plasma sheath can in principle be rotated by external fields as well.

For strong external torques, we find a novel self-organization behaviour of the rods. Below
an overlap density, the system self-organizes into a “T-structured fluid”, where neighbouring
rods preferentially orient perpendicular to each other avoiding mutual overlap by a coordinated
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motion. This dynamical T-structure which is gradually increasing with density is reminiscent
to the static three-dimensional house-of-card structure as found in the gelling of clay parti-
cles [15]. If an overlap density is exceeded, a sharp jamming transition occurs towards a dy-
namically blocked state where neighbouring rods are aligned preferentially with a parallel ori-
entation. This is a structural non-equilibrium phase transition which we call jamming [16,17]
since it originates from a mutual dynamical hindrance of the rods. We may view this effect
as the rotational counterpart of systems translationally driven by an external force [18,19].

In our model, we consider N two-dimensional rod-like particles moving in an area A which
are characterized by their center of mass and their orientation. The rods interact via a Yukawa
segment model which was shown to be a good representation of charged rod-like colloids [20].
There are Nb = 10 equidistant beads along the rods; the bead spacing along the rods is given by
the bead diameter σ, which sets the total rod length as L = Nbσ. The bead diameter σ serves
as a natural length scale. The repulsive interaction potential between beads of different rods
is V (r) = U0 σ exp[−κ(r−σ)/σ]

r , where r is the interbead distance, U0 is an energy scale and κ is
the dimensionless screening parameter. The number density of the rods is specified in terms
of the dimensionless area packing fraction η = πNL2/4A and the system temperature is T .

The rods are moving according to Brownian dynamics [21] with rotational friction γR

and anisotropic translational frictions γ|| and γ⊥, parallel and perpendicular to their orienta-
tions [21]. These friction coefficients were taken from ref. [22] for a rod aspect ratio of 10 and a
rod diameter σ. The standard Langevin dynamics with neglected hydrodynamic interactions
was adopted with random kicks of the solvent which keeps the suspension of rods at constant
thermal energy kBT . On top of that the rods are exposed to a constant external torque D
which tends to rotate all rods in the same direction driving the system into a non-equilibrium
steady state [23].

We solved the Langevin equation for the rod centers and orientations in a Brownian dy-
namics computer simulation with a finite time step ∆t = 0.009τB, where τB = γ||σ2/U0 is
a suitable Brownian time scale. The rods are in a quadratic box with periodic boundary
conditions in x and y directions. Typically, we simulated N = 80 rods for 300000 time steps
to get into the steady state. Statistics in the steady state were gathered by a further time
average over typically 100000 time steps. In our simulations we fixed the external torque to
D/U0 = 150 and the screening parameter to κ = 2. We varied the rod density η and the
reduced temperature T ∗ = kBT/U0.

In order to characterize mutual orientations of neighbouring rods we introduce the order
parameter

m =

∫ a

0
g(r) · cos2(θ(r))

∫ a

0
g(r)

, (1)

where θ(r) is the relative angle between two rods with the distance r, a = (N
A )−

1
2 is the average

distance of the rods and g(r) is the pair correlation function between the centres of the rods.
Hence, if m = 0, neighbouring rods are perpendicular oriented while they are parallel when
m = 1. If there is no correlation of neighbouring correlations, m = 0.5.

In fig. 1, the order parameter is shown vs. rod density for different temperatures. Obvi-
ously, m equals 0.5 for the non-interacting system at small densities. For zero temperature,
there is a clear built-up of a T-structure, as signalled by a value for the order parameter which
is close to zero. At a certain threshold density of ηc ≈ 0.95, the orientation of neighbouring
rods drastically changes to be parallel. This is accompagnied by a sharp jump in the order
parameter m from zero to a finite non-vanishing value which is clearly seen in fig. 1. Within
our numerical accuracy this is a sharp discontinuous jump pointing to a true non-equilibrium
phase transition. An increase in the temperature makes the jump ∆m in the order parameter
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Fig. 1 – Order parameter m of neighbouring orientations vs. the area packing fraction η of the rods for
different reduced temperatures T ∗. The inset shows the maximal variation ∆m of the order parameter
within a small packing fraction interval of 0.01 as a function of T ∗.

smaller (see the inset of fig. 1). For temperatures larger than roughly 0.15, we can only detect
a continuous crossover within the statistical accuracy of our data. We have checked that the
transition occurs at the same threshold density for a larger system with N = 400 rods indicat-
ing that there are no finite-size effects. We have further examined hysteresis effects by slowly
increasing and decreasing the density but we could not find any indication of hysteresis [24].

In order to resolve dynamical anomalies at the transition, we have calculated the mean
angular velocity 〈ω〉 of the rods in the steady state. For vanishing rod densities η = 0,
clearly 〈ω〉 = D/γR, therefore it is convenient to plot a reduced mean angular velocity 〈ω〉∗ =
〈ω〉γR/D. In fig. 2, this quantity 〈ω〉∗ is shown vs. the rod density η for different temperatures.
Interestingly, 〈ω〉∗ is almost independent of density. The self-organization into the T-structure
clearly avoids friction by mutual collisions and allows for a fast collective rotation of the rods.
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Fig. 2 – Mean angular velocity 〈ω〉∗ normalized to its zero-density limit vs. area packing fraction η
of the rods for different reduced temperatures T ∗.
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Fig. 3 – Simulation snapshots in the steady state at T ∗ = 0 for three different densities. All beads are
shown as a cross. The size of the periodic simulation box is given in the xy plane in units of the bead
distance σ. a) Low-density snapshot at η = 0.13 revealing almost freely rotating rods. b) Density
below the jamming transition, η = 0.94. The T-structure is clearly visible, e.g. marked by the broken
circle. A four-rod collision event is marked in the solid circle. c) Density above the jamming transition,
η = 0.95. Jamming shows up as preferred parallel orientation of neighbouring rods.

The sharp transition from a T-structure to parallel rods is dynamically accompanied by a
drastic change in 〈ω〉 which gives clear significance for a dynamical jamming. Therefore, we
call the phase transition “jamming transition”. Again, consistent with the order parameter
analysis of fig. 1, the sharp transition becomes a smooth crossover when T ∗ > 0.15.

More detailed information about the change of rod configurations near the jamming tran-
sition is contained in typical simulation snapshots of the steady state in fig. 3 at zero temper-
ature. First, as a reference situation, we show a low-density snapshot at η = 0.13 in fig. 3a,
where the dynamics of neighbouring rods are almost uncorrelated, hence the rods are almost
free rotators. Snapshots slightly below, η = 0.94, and above, η = 0.95, the jamming transition
are presented in figs. 3b and c. A typical T-structure below jamming is indicated by a broken
sphere in fig. 3b. On the other hand, above the density threshold, jammed neighbouring rods
with parallel orientations are clearly visible in fig. 3c. Finally, simulation data for the location
of the threshold density ηc associated with the loss of the T-structure and the dynamical jam-
ming are presented in fig. 4 in the temperature-density plane. Note that we have restricted
the temperature to values where the transition is accompanied by a finite jump in the order
parameter. More details of an end-point where this jump vanishes have to be explored in
future studies.

Let us now present a theory for the location of the jamming transition in the temperature-
density plane which is based on a simple instability analysis of the T-structured fluid. The
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Fig. 4 – Phase diagram for the threshold density ηc in the temperature-density plane separating the
jammed from the T-structured region. Both simulation results (with their statistical uncertainties)
and data from the instability analysis are compared.

stability of the T-structure is mostly governed by the situation where four rods are close to
contact. This situation is sketched in fig. 5. For hard needles of length L, the maximal packing
density of a T-structure can be achieved if all rotators are placed on a simple square lattice with
lattice constant L/

√
2 which corresponds to a maximal packing fraction η0 = π/2 = 1.57 . . . .

We approximate the short-range fluid structure by this idealized solid and assume an averaged
width δ above which the needle end points are smeared, see again fig. 5. Upon the action
of the external torque D, it takes a passage time τ = 2δγR/LD to rotate one rod across the
confining cone shown as a hatched area in fig. 4. During this time the rods feel collisions with
the neighbouring rods by an averaged force F̄ which can be estimated as follows. We assume
that the leading part of the collisions comes from the outermost segment interactions V (r)
alone. We define an interaction range ζ needed to compete with the external torque D via
L
2 |dV (ζ)/dr| = D. Typically, this range is smaller than the width δ. Assuming a homogeneous
distribution of the rod ends in their hatched area of width δ, we get F̄ = (2D/L)4(ζ/δ)2,
where (2D/L) is the typical force for interacting rods within a distance ζ, and 4(ζ/δ)2 is
the conditioned probability to find two rod ends with a distance smaller than ζ. During
the passage time τ there will be a mean displacement δ′ of the end points by a combination

L
δ

Fig. 5 – Schematic plot of four colliding rods in the T-structured phase as marked by a solid circle in
fig. 3b). The hatched area is one key quantity in the instability analysis.
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of rotation and translation parallel and perpendicular to the rod orientation and thermal
diffusion: δ′ = F̄Γτ + δT with Γ = 1/γ|| + 1/γ⊥ + L2/4γR and the thermal displacement δT

given by δT =
√

kBTΓτ . If δ′ is larger than δ, the situation is unstable, the stability limit
is hence reached for δ′ = δ which has the numerical solution δc. For zero temperature, the
analytical solution is δ = δc = 4ζ

√
ΓγR/L. Finally, this threshold value in δ translates into

the instability packing fraction
ηc = π/2(1 + 2δc/L)2. (2)

For finite temperature, the instability theory predicts a square-root singularity in temperature
ηc(T ) = ηc(T = 0) + O(

√
T ). For the parameters used in the simulation we obtain ηc = 1.0

for T = 0. The temperature dependence is shown in fig. 4. As expected, the instability theory
is an upper bound as compared to the simulation data. But on the relative fine density scale
shown, it is fair to say that the theory provides a quantitative description of the location of
the jamming phase transition.

In conclusion, we have shown that two-dimensional driven rotators self-organize into a
T-structured fluid upon an external torque. The characteristics of this T-structured fluid is
that orientations of neighbouring rods are perpendicular. If the rod density exceeds a critical
one, there is a jamming transition towards a dynamically blocked state where orientations of
neighbouring rods are parallel. These theoretical predictions which are based on simulations
and an instability analysis can be verified in experiments. Among the most promising can-
didates are colloidal rods confined with an optical tweezer close to a plate, a set-up which
has been used recently [11]. When circularly polarized light is applied, it should be possible
to realize our model and confirm the T-structure directly in real space. Since hydrodynamic
interactions are neglected in our model, it is appropriate only for highly charged rod-like sus-
pensions or for rods adjacent to a substrate. However, we think that the general mechanism of
the T-structure formation will be stable when hydrodynamic interactions will be added [25].
Finally, the T-structure and the jamming transition can be exploited to tailor the efficiency
of fluid mixing in micro- and nanofluidic devices by using an ensemble of driven colloidal
rotators. For example, the diffusion of tracer particles is expected to be greatly enhanced in
the T-structured phase.
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