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We show that the critical behavior of a colloid-polymer mixture inside a random porous matrix of
quenched hard spheres belongs to the universality class of the random-field Ising model. We also
demonstrate that random-field effects in colloid-polymer mixtures are surprisingly strong. This makes
these systems attractive candidates to study random-field behavior experimentally.
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One long-standing problem in the phase behavior of
fluids concerns the universality class of the liquid-gas
transition in random porous media. Conceivable universal-
ity classes are those of the pure Ising model, the (bond or
site) diluted Ising model [1], or the random-field Ising
model [2–4]. It was suggested by de Gennes [5] that the
universality class is that of the random-field Ising model.
However, resolving the universality class experimentally is
difficult, partly because well-characterized porous media
are scarce. The prototype realization is silica aerogel,
which has the disadvantage that the coupling between the
porous medium and the fluid is weak. This is evident from
the small shift in the critical temperature observed in these
systems [6,7]:

 � � jTM � TPj=TP � 6� 10�3; (1)

where TP is the critical temperature in the pure system, and
TM the critical temperature in the aerogel matrix. The
universality class, consequently, could not be resolved in
these experiments.

In theoretical approaches, the porous medium is usually
modeled by an equilibrium configuration of fixed spheres.
The fluid particles are then allowed to migrate through
the medium. Interestingly, these quenched-annealed sys-
tems display pronounced shifts in the critical temperature,
typically � > 0:2 [8–13]. Compared to aerogel, the cou-
pling between the fluid and the porous medium is thus
much stronger, making quenched-annealed fluids attractive
model systems.

Nevertheless, the universality class of quenched-
annealed systems has not yet been determined. The most
direct approach, which is to measure the critical exponents,
is cumbersome because the critical exponents of the pure
and diluted Ising model are rather similar, whereas for the
random-field Ising model (RFIM), the critical exponents
are not precisely known in any case. However, there is an
additional feature in the critical behavior which can be
used to resolve the universality class. A striking feature of
the RFIM is that the standard hyperscaling relation be-
tween critical exponents is violated, and replaced by the
modified relation �� 2� � ��d� �� [14,15]. Here, d �

3 is the spatial dimension; �, �, and � are the critical
exponents of the order parameter, susceptibility, and cor-
relation length, respectively, while � is a third (probably
not independent [16]) exponent called the ‘‘violation of
hyperscaling’’ exponent. For the pure (� � 0:326; � �
1:239; � � 0:630 [17]) and diluted (� � 0:35; � � 1:34;
� � 0:68 [1]) Ising models, hyperscaling is not violated,
implying � � 0. In contrast, for the RFIM (�< 0:13; � �
1:7–1:9; � � 1:02–1:1 [18,19]) one has � � 1.

The aim of this Letter is twofold. First, we demonstrate
that hyperscaling is violated in quenched-annealed sys-
tems, using large-scale computer simulations and finite-
size scaling. This fixes the critical behavior of quenched-
annealed systems into the universality class of the RFIM,
confirming the conjecture of de Gennes. Second, we show
that quenched-annealed systems also pave the way toward
exciting new experiments. As we will discuss, the consid-
ered quenched-annealed system is realized experimentally
in a colloid-polymer mixture. Compared to aerogel,
random-field effects should become easier to detect, due
to the strong coupling between the fluid and the porous
medium.

The outline of this Letter is as follows. First, we intro-
duce our quenched-annealed model. Next, simulations are
used to show that hyperscaling is violated. In addition, the
critical exponents extracted from our data are shown to be
compatible with those of the RFIM. Finally, we discuss
how a quenched-annealed system can be realized experi-
mentally in a colloid-polymer mixture.

We consider colloid-polymer mixtures within the frame-
work of the Asakura-Oosawa-Vrij (AOV) model [20,21].
The AOV model is known to reproduce experimental ob-
servations remarkably well, including bulk phase separa-
tion [22], interfacial properties [23], and gelation [24]. In
this model, colloids and polymers are treated as effective
spheres of diameter �c and �p, respectively. The colloid-
to-polymer size ratio is denoted as q � �p=�c. Hard-
sphere interactions are assumed between colloid-colloid
and colloid-polymer pairs, while polymer-polymer pairs
can interpenetrate freely. The simulations are performed in
the grand canonical ensemble, where the volume V and the

PRL 97, 230603 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
8 DECEMBER 2006

0031-9007=06=97(23)=230603(4) 230603-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.97.230603


respective (dimensionless) fugacities, zc and zp, of colloids
and polymers are fixed, while the number of particles
inside V fluctuates (lengths are expressed in units of �c).
Following convention, the polymer fugacity is expressed
by the polymer reservoir packing fraction �rp � �zpq

3=6.
The colloid packing fraction is �c � ��3

cNc=�6V�, with
Nc the number of colloids in the system. In the absence of
quenched disorder, the phase behavior of the AOV model is
well understood. For sufficiently large q, the AOV model
phase separates into a colloid-rich phase (the colloidal
liquid) and colloid-poor phase (the colloidal vapor), if �rp
exceeds a critical value �rp;cr [25]. The binodal exhibits an
Ising critical point [26]. The phase transition is driven by
�rp, which thus plays a role similar to that of inverse
temperature in liquid-vapor transitions of simple fluids.

We now consider the AOV model inside a random
porous medium. The medium is modeled as an equilibrium
ideal-gas configuration of spheres of diameter �M � �c at
fixed packing fraction �M � 0:05 (in the terminology of
Ref. [27], this resembles anticorrelated disorder). We set
q � 1:0, assuming hard-sphere interactions between
colloid-matrix pairs, while the polymer-matrix interaction
is left ideal. We use a cubic simulation box of edge L with
periodic boundary conditions. We aim to measure the order
parameter distribution 	PL
av. Here, PL � PL��c� is the
probability of observing a system with colloid packing
fraction �c measured for one realization of the matrix,
while 	� � �
av denotes an average over different matrix
realizations. For each random matrix, a grand canonical
Monte Carlo simulation of the AOV model is performed,
using a cluster move [26]. Colloids and polymers are
inserted and removed from the simulation box at random,
with the constraint that colloid-colloid, colloid-polymer,
and colloid-matrix overlaps are forbidden. During the
simulations, the (quenched) matrix particles remain fixed.
The number of colloids in the simulation box fluctuates,
and this is used to measure 	�F�Nc; Nc � 1�
av, defined as
the free energy difference between the state with Nc and
Nc � 1 colloids, averaged over typically 250 matrix real-
izations. By successively measuring the free energy differ-
ence, the total averaged free energy 	W
av as a function of
�c results [28]. The latter is related to the sought-for
distribution 	PL
av / e�	W
av=kBT , with kB the Boltzmann
constant and T the temperature.

At two-phase coexistence, 	PL
av becomes double
peaked, where the peak at low (high) �c reflects the
colloidal vapor (liquid) phase. The coexisting phase den-
sities follow from the average peak positions. Typical
distributions 	PL
av are shown in the upper frame of
Fig. 1, for several values of �rp. By recording the peak
positions as a function of �rp, the binodal is found (see
bottom frame). Unusual behavior is revealed. For pure
Ising critical behavior, well-separated peaks in the order
parameter distribution indicate that one is well away from
the critical point, and inside the two-phase region of the

phase diagram. Finite-size effects in the peak positions
should then be small. In contrast, even though the peaks
in 	PL
av are well separated for �rp � 1:17 and higher, the
binodal continues to display a pronounced L dependence.
To locate the critical point, we have measured the L
dependence of the cumulant U1 � 	hm2i
av=	hjmji
2av with
m � j�c � 	h�ci
avj. At the critical point, the cumulant
becomes system-size independent [29]. Plots of U1 vs
�rp, for several system sizes L, are expected to show a
common intersection point, leading to an estimate of �rp;cr.
The result is shown in the top frame of Fig. 2, yielding
�rp;cr � 1:192� 0:005. To determine the critical colloid
packing fraction �c;cr, the quantity 	h�ci
av�L� evaluated
at �rp;cr, was linearly extrapolated in 1=L, yielding �c;cr �

0:070.
We thus find that the order parameter distribution at the

critical point remains sharp, featuring two well-separated
and nonoverlapping peaks. Violation of hyperscaling then
follows from the L dependence of the peak positions and
the root-mean-square peak widths [30,31]. For the differ-
ence � between the liquid and vapor peak positions, finite-
size scaling predicts � / L��=�. Similarly, for the width 	
of the vapor or liquid peak 	 / L��=��d�=2. The relative
peak width thus becomes wr � 	=� / L! with ! �
��=�� d�=2� �=�. In case hyperscaling holds ! � 0,
and a finite relative width wr > 0 in the thermodynamic
limit L!1 is retained. In contrast, when hyperscaling is
violated and !< 0, wr vanishes in the thermodynamic
limit, leading to an order parameter distribution featuring
two � peaks. Substitution of the RFIM critical exponents
indeed yields !< 0, implying wr ! 0 for L! 1, con-
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FIG. 1. Top frame: Order parameter distribution 	PL
av for
L � 12 and several values of �rp. Bottom frame: Binodal curves,
obtained by reading off the peak positions in 	PL
av, for several
system sizes L. The triangle at �c;cr � 0:070 and �rp;cr � 1:192
marks the location of the critical point in the thermodynamic
limit.

PRL 97, 230603 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
8 DECEMBER 2006

230603-2



sistent with our observations. Moreover, since the critical
order parameter distribution tends to a sum of two � peaks,
the value U?

1 of the cumulant at the critical point (horizon-
tal arrow in Fig. 2) approaches the trivial value U1 � 1.
Indeed, the cumulants of Fig. 2 intersect at a value close to
1, consistent with RFIM critical behavior, but ruling out
pure and diluted Ising critical behavior, where U?

1 is sig-
nificantly different from unity (see also Fig. 3).

Having established that quenched-annealed systems
show RFIM critical behavior, the experimental realization
of such a model will be discussed. To this end, the cross-
over in critical behavior [32,33], from pure Ising to RFIM,
must be addressed. Defining t as the relative distance from
the critical point, the approach to the critical point, at t �
0, is characterized by two regimes: t < tx and t > tx, with
tx the crossover temperature. For fluids in porous media,
RFIM critical behavior is observed only when t < tx. For
t > tx, the critical behavior is still dominated by the pure
Ising model, and ‘‘effective’’ critical behavior is observed
instead (in this case a combination of RFIM and pure Ising
universality). Whether RFIM critical behavior can be ob-
served depends crucially on tx. If tx is very small, precise
temperature control is required, which may be difficult to
realize experimentally. Note that tx is a nonuniversal quan-
tity, dependent on the particle interactions, and, most im-
portantly, on the packing fraction of the porous medium
�M. By increasing �M, random-field effects are expected
to become more pronounced, implying a larger tx. For
silica aerogel, tx is clearly very small, since the measured
critical exponents do not differ much from those of the pure
Ising model [6,7]. In contrast, our results for the quenched-
annealed model show pronounced RFIM behavior, indicat-
ing a much larger tx. For experimental applications, it then
becomes relevant to know which values of �M are re-
quired, in order to enable measurements in the regime t <
tx and to observe RFIM behavior.

Shown in the bottom frame of Fig. 2 is�rp;cr as a function
of �M [34]. Defining the analogue of Eq. (1) as � �
j�rp;cr�M� � �rp;cr�P�j=�rp;cr�P�, with �rp;cr�M� the critical
value of �rp in the presence of the random matrix, and
�rp;cr�P� the corresponding value in the pure (�M � 0)
system, � is found to increase from � � 0:03 (�M �
0:005) up to � � 0:5 (�M � 0:05). This confirms our
expectation that, by increasing �M, random-field effects
grow stronger, and tx becomes larger. Evidence for the
crossover in critical behavior is presented in the top frame
of Fig. 3. Shown is U?

1 as a function of �M. Recall that U?
1

is defined as the value of the cumulant at the critical point;
see the top frame of Fig. 2. The horizontal lines correspond
to U?

1;pure � 1:2391 [35] of the pure Ising model, and the
(exact) RFIM value U?

1 � 1. The figure strikingly illus-
trates effective critical behavior, between that of the pure
Ising model and the RFIM, with a pronounced drift toward
the latter, as �M increases. Additional confirmation of the
crossover is obtained from the critical exponent ratio �=�.
Shown in the bottom frame of Fig. 3 is�=� as a function of
�M. The upper horizontal line shows the pure Ising value;
the lower line is an upper bound for the corresponding
RFIM value [18,19]. Again, a clear drift toward the RFIM
value is observed.

Figure 3 then provides a clear indication which value of
�M to use in an experiment. The relative distance from the
critical point that can be reached in simulations is nowa-
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FIG. 3. Evidence of the crossover in critical behavior, from
pure Ising toward random-field Ising, as a function of �M. The
top frame shows U?
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shows the effective critical exponent ratio �=� as a function of
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days t � 10�3 [36]; similar precision is also achieved in
experimental colloid-polymer systems [37]. Although this
precision is rather low compared to what is achieved in
atomic fluids, Fig. 3 nevertheless shows pronounced devi-
ations from pure Ising behavior already at �M � 0:015,
with the crossover to RFIM being nearly completed at
�M � 0:05. This suggests �M > 0:05 as the optimal re-
gime for experiments. Such packing fractions are surpris-
ingly low and easily realized in aggregated colloidal rods
[38] or spheres [39]. There may even be the exciting
possibility to generate the porous medium by optically
trapping some of the colloidal particles [40]. An additional
advantage is that colloidal particles, due to their meso-
scopic size, allow for very detailed investigations of fluid
phase behavior. By using confocal microscopy, individual
particles can be visualized and tracked directly in real
space [41]. This has already enabled particle-level inves-
tigations of interface fluctuations [42] and bulk critical
behavior [37]. The present results indicate that the experi-
mental verification of random-field behavior is feasible in
colloid-polymer mixtures.

In summary, we have used large-scale Monte Carlo
simulations to resolve the universality class of the
quenched-annealed model. The universality class was
shown to be that of the random-field Ising model, as was
evident from the violation of hyperscaling and the behavior
of (effective) critical quantities. This confirms the conjec-
ture of de Gennes. In addition, we have demonstrated the
potential of colloid-polymer mixtures in the experimental
detection of random-field critical behavior, providing a
valuable alternative over aerogel-based systems.
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J. Phys. Condens. Matter 14, L1 (2002).
[24] J. Bergenholtz, W. Poon, and M. Fuchs, Langmuir 19,

4493 (2003).
[25] H. Lekkerkerker, W. Poon, P. Pusey, A. Stroobants, and

P. Warren, Europhys. Lett. 20, 559 (1992).
[26] R. L. C. Vink and J. Horbach, J. Chem. Phys. 121, 3253

(2004).
[27] M. Schwartz, J. Villain, Y. Shapir, and T. Nattermann,

Phys. Rev. B 48, 3095 (1993).
[28] P. Virnau and M. Müller, J. Chem. Phys. 120, 10 925

(2004).
[29] K. Binder, Z. Phys. B 43, 119 (1981).
[30] K. Eichhorn and K. Binder, Europhys. Lett. 30, 331

(1995).
[31] K. Eichhorn and K. Binder, J. Phys. Condens. Matter 8,

5209 (1996).
[32] M. E. Fisher, Rev. Mod. Phys. 46, 597 (1974).
[33] K. Binder and H.-P. Deutsch, Europhys. Lett. 18, 667

(1992).
[34] For these data, we set q � 0:8, �c � �M, and also in-

troduce hard-core matrix-polymer interactions.
[35] E. Luijten, M. E. Fisher, and A. Z. Panagiotopoulos, Phys.

Rev. Lett. 88, 185701 (2002).
[36] Y. C. Kim, M. E. Fisher, and E. Luijten, Phys. Rev. Lett.

91, 065701 (2003).
[37] C. P. Royall, D. Aarts, and H. Tanaka, ‘‘Bridging

Lengthscales in Colloidal Liquid-Vapour Interfaces:
From Critical Divergence to Single Particles’’ (to be
published).

[38] S. G. J. M. Kluijtmans, G. H. Koenderink, and A. P.
Philipse, Phys. Rev. E 61, 626 (2000).

[39] S. G. J. M. Kluijtmans and A. P. Philipse, Langmuir 15,
1896 (1999).

[40] D. L. J. Vossen, A. van der Horst, M. Dogterom, and A.
van Blaaderen, Rev. Sci. Instrum. 75, 2960 (2004).

[41] A. van Blaaderen, Progr. Colloid Polym. Sci. 104, 59
(1997).

[42] D. G. A. L. Aarts, M. Schmidt, and H. N. W. Lekkerkerker,
Science 304, 847 (2004).

PRL 97, 230603 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
8 DECEMBER 2006

230603-4


