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A nanocomposite film containing highly polarizable inclusions in a fluid background is explored when an external 
electric field is applied perpendicular to the planar film. For small electric fields, the induced dipole moments 
of the inclusions are all polarized in field direction, resulting in a mutual repulsion between the inclusions. 
Here we show that this becomes qualitatively different for high fields: the total system self-organizes into 
a state which contains both polarizations, parallel and antiparallel to the external field such that a fraction 
of the inclusions is counter-polarized to the electric field direction. We attribute this unexpected counter-

polarization to the presence of neighboring dipoles which are highly polarized and locally revert the direction of 
the total electric field. Since dipoles with opposite moments are attractive, the system shows a wealth of novel 
equilibrium structures for varied inclusion density and electric field strength. These include fluids and solids with 
homogeneous polarizations as well as equilibrium clusters and demixed states with two different polarization 
signatures. Based on computer simulations of an linearized polarization model, our results can guide the control 
of nanocomposites for various applications, including sensing external fields, directing light within plasmonic 
materials, and controlling the functionality of biological membranes.
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1. Introduction

The need to build adaptive and low-energy expenditure intelligent 
systems that can be controlled by external stimuli has been promoted by 
recent advances in sensor technology [1–6]. Among various nanoscale 
sensing techniques [7], field-effect transistors with channels made of 
two-dimensional (2D) materials are gaining attention due to their fast 
response, easy operation, and capability of integration. 2D nanomateri-

als are also being considered for fabricating wearable, flexible devices 
of small size for energy scavenging [8]. To improve the capacitive and 
energy scavenging properties of 2D nanomaterials, they are usually 
blended with high-𝑘 inclusions. In order to fight ionic loss currents in 
such 2D nanocomposites [9], there is a tendency to make them minia-

ture and a one-layered film.

The basic field-sensing ability of 2D nanomaterials can be under-

stood in two ways: either as the change in its surface area, or as a change 
in the distribution of the inclusions under poling condition. In the for-

mer case, if the poling field is perpendicular to the film surface and the 
matrix is an elastomer, the induced dipole-dipole repulsion causes a lat-

eral expansion of the film area. In the latter case, strong correlations 
between induced dipoles might cause an uneven distribution within the 
matrix, leading eventually to a segregation of the system into regions 
of low density (gas) and high density (liquid). This phenomenon is the 
central focus of current work.

Understanding the reorganization of inclusion into clusters and con-

trolling their movement on 2D films are also crucial for comprehend-

ing the biomechanical changes in cell membranes. Phospholipids are 
recognized for possessing a dipole potential, arising from charge accu-

mulation on membrane surfaces and the alignment of dipolar residues 
and membrane components [10–13]. These strong dipolar fields, rang-

ing from 100 MV/m to 1000 MV/m, regulate the conformation and 
distribution of amphiphiles and membrane proteins, including ion-

translocating proteins like voltage-gated ion channels, pumps, and car-

riers embedded in the lipid bilayer matrix. Such field-assisted structural 
regulation enables the selective transport of materials across the lipid 
bilayer [14], and advocates the clustering of membrane-anchored pro-

teins [15]. These ordered domains of proteins with larger dipole poten-

tials significantly impact the sorting of membrane-associated molecules 
and cell signaling properties of the membranes [13,15].

The 2D nanocomposite system examined in this study is composed 
by highly polarizable nano-inclusions embedded in a fluid and exposed 
to a perpendicular electric field. Employing molecular dynamics simu-

lations, we investigate the perpendicular (out-of-plane) polarization of 
the 2D nanocomposite. Under low electric fields, where the induced 
dipole moments of the inclusions align parallel to the applied field, 
the inclusions repel each other, leading to random dispersion in the 
film. Notably, at high electric fields, a qualitatively distinct behavior 
emerges: the entire system spontaneously organizes into a state that in-

corporates both parallel and antiparallel polarizations with a fraction 
of the inclusions counter-polarized to the electric field direction. This 
unexpected counter-polarization is attributed to the presence of neigh-

boring dipoles that are highly polarized and locally reverse the total 
electric field’s direction. Due to the attractive nature of dipoles with 
opposite moments, the system exhibits a diverse range of novel equi-

librium structures, influenced by inclusion density and electric field 
strength. These structures encompass fluids and solids with homoge-

neous polarizations, as well as equilibrium clusters and demixed states 
with two distinct polarization signatures. Our findings are based on 
a linearized polarization model that incorporates effective many-body 
interactions between the inclusions, solved self-consistently using a hy-

brid technique. These results provide insights for controlling nanocom-

posites in various applications, such as sensing external fields, directing 
light within plasmonic materials, and influencing the functionality of 
biological membranes.

We emphasize here that the demixing in our system differs quali-
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tatively from previous work of phase separation for dipolar systems in 
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Fig. 1. (a) Schematic representation of the system set-up. Polarizable inclu-

sions, shown as red spheres, are suspended in a background dielectric liquid, 
shown in yellow, and the whole system is subjected to an external field 𝐸 ori-

ented perpendicular to the film surface. Green arrows indicate induced dipole 
moments of inclusions. (b) A simplified representation of the associated dipole 
triplet. The central inclusion at the position 𝑟 develops a negative dipole mo-

ment when the dipolar field of the neighbors, 2|�⃗�𝜇(𝑟)| > 𝐸, resulting in a local 
counter-polarization. For details see the text and Appendix A. (For interpreta-

tion of the colors in the figure(s), the reader is referred to the web version of 
this article.)

three [16–22] or two dimensions [6,17,23–39]. In all of these previous 
works, the dipolar moments of the particles were either fixed or deter-

mined by the external field alone but were never self-consistently de-

termined from neighboring polarizable particles which is the important 
ingredient of the present work. A similar idea of self-consistent polar-

ization was brought up and modeled by Wilson and Madden [40–43]

but this was done in the context of ionic metals in three dimensions and 
not in two-dimensional layers where the counter polarization effects are 
more pronounced.

The rest of this paper is organized as follows. Our simulation model 
for the 2D nanocomposite film with mobile and polarizable inclusions 
is described in section 2. In section 3 we provide a comprehensive 
overview of our molecular dynamics simulations. Section 4 encom-

passes simulation outcomes. Here we showcase simulation snapshots, 
deliberate on dipole association triplet and dipole clustering effects, 
and conduct an analysis of dipole moment distribution functions and 
structure factors. Finally, our conclusions are presented in section 5.

2. The model

We consider a 2D nanocomposite film comprising 𝑁 polarizable 
high-𝑘 inclusions of dielectric permittivity 𝜀𝑝 and hard core diameter 
of 𝜎 suspended in a fluid background of a lower permittivity 𝜀𝑚 < 𝜀𝑝
at positions 𝑟𝑖 (𝑖=1,...,𝑁) as depicted in Fig. 1. The film thickness is 
fixed to 𝐿𝑧 = 𝜎, and its lateral dimensions 𝐿𝑥 =𝐿𝑦 =𝐿 are determined 
by the 2D packing fraction of inclusions 𝜂 = 𝑁𝜋

[
𝜎∕(2𝐿)

]2
. Under an 

applied field �⃗�, perpendicular to the film surface, the particles gain an 
induced dipole moment 𝜇0 = 𝛼�⃗� parallel to �⃗�, resulting in repulsive 
dipole-dipole interactions between them.

We model the situation with a Hamiltonian that depends on the 
configuration of the inclusions but also parametrically on their actual 
dipole moments {𝜇𝑖}, 𝑖 = 1, ...., 𝑁 . The dipole moments adjust them-

selves instantaneously to the momentaneous configuration such that 
they minimize the Hamiltonian for fixed inclusion coordinates. At the 
minimum, a situation is realized where the polarization is selfconsis-

tently and uniquely governed by the local electric field produced both 
externally and by the neighbors. In other terms, the dipole moments 
{𝜇𝑖}, 𝑖 = 1, ...., 𝑁 follow adiabatically the dynamical positions of the in-

clusions. Thermal fluctuations of the polarized dipoles are neglected. 
We remark that this is formally similar to the Born-Oppenheimer ap-

proximation in solid state physics where the electron density follows 
adiabatically the ion dynamics [44]. In practice this is resulting in ef-

fective many-body forces [45–47] induced via the polarization acting 
on the inclusions.

In detail the Hamiltonian for the considered system is written as,

𝐻
(
{𝑟𝑖},{𝑝𝑖},{𝜇𝑖}, 𝑖 = 1, ....,𝑁

)
=

𝑁∑ 𝑝2
𝑖 +

𝑁∑ 𝑁∑
𝑈 −

𝑁∑
𝜇 𝐸 +

𝑁∑
𝑈 (1)
𝑖=1 2𝑀
𝑖=1 𝑗=1,𝑗≠𝑖

𝑖𝑗

𝑖=1
𝑖

𝑖=1
𝑖
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where {𝑟𝑖}, {𝑝𝑖} and {𝜇𝑖} denote the whole coordinate, momentum, 
dipole moment sets for the inclusions, and 𝑀 is the inclusion mass. 
Here the first term is the total kinetic energy of the in-plane movement 
of inclusions resulting in a finite temperature of the system, and the 
second term is the total potential energy of the dipolar interactions be-

tween all inclusions,

𝑈𝑖𝑗 =

{
∞ , for 𝑟𝑖𝑗 ≤ 𝜎 ,
𝜇𝑖 𝜇𝑗

4𝜋𝜀0𝑟3𝑖𝑗
, for 𝑟𝑖𝑗 > 𝜎 , (2)

where 𝜀0 denotes the permittivity of vacuum, and 𝑟𝑖𝑗 = |𝑟𝑗 − 𝑟𝑖| repre-

sents the distance between the 𝑖-th and 𝑗-th induced dipoles. The third 
term in Eq. (1) represents the potential energy of the induced dipole 
𝜇𝑖 under the applied field �⃗�. The fourth term in Eq. (1) represents the 
self-polarization energy of the inclusion [22,48],

𝑈𝑖 =
1
2𝛼

𝜇2
𝑖 (3)

where the expression for the inclusion polarization coefficient 𝛼 is given 
in Appendix A.

By minimizing the Hamiltonian over the induced dipole moment 𝜇𝑖,

𝑑𝐻
(
{𝑟},{𝑝},{𝜇}

)
𝑑𝜇𝑖

= 0 (4)

we arrive at the following equation for 𝜇𝑖,

𝑁∑
𝑗=1

𝜇𝑗

4𝜋𝜀0𝑟3𝑖𝑗
−𝐸 +

𝜇𝑖

𝛼
= 0 (5)

which can be rewritten as,

𝜇𝑖(𝑟) = 𝜇0 + 𝜇
(𝑗)
𝑖
(𝑟) (6)

where

𝜇
(𝑗)
𝑖
(𝑟) = 𝛼𝑑

𝑁∑
𝑗=1,𝑗≠𝑖

�⃗�𝑗 (𝑟𝑖) (7)

denotes the contribution from the combined field of all other dipoles. 
Eq. (5) is the basic self-consistent condition to determine the actual 
dipole moments.

Expressions for the polarization coefficient 𝛼𝑑 and for the cumu-

lative field 
∑

𝑗 �⃗�𝑗 can be found in Appendix A. The field �⃗�𝑗 , strictly 
speaking, is not homogeneous inside the 𝑖-th particle at intermediate 
and high 𝜂, and a volume integration of the neighboring fields 𝐸𝑗 for 
the calculation of 𝜇𝑖 should be carried out [26]. Nevertheless, for the 
sake of simplicity, we assume �⃗�𝑗 homogeneous inside the target inclu-

sion.

The amplitude of the dipoles 𝜇𝑖 and the average separation distance 
𝑟𝑎𝑣 between neighboring dipoles define the interaction strength Γ𝜇 be-

tween dipoles,

Γ𝜇 =
𝜇2
0

4𝜋𝜀0𝜀𝑚𝑟3𝑎𝑣𝑘𝐵𝑇
(8)

where

𝑟𝑎𝑣 =
2𝐿√
𝑁𝜋

= 𝜎√
𝜂

(9)

We introduce a coupling parameter for the 2D systems as,

Γ =
Γ𝜇

𝜂3∕2
= 𝛼2 𝐸2

4𝜋𝜀0𝜀𝑚𝜎3𝑘𝐵𝑇
(10)

which does not depend on the particle density [16]. When Γ is of the 
order of 1, the correlation effects between the induced dipoles can be 
ignored. This means that 𝜇𝑖 = 𝜇0 = 𝛼𝐸, and as a result, the third part 
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in Eq. (1) becomes 𝑁𝛼𝐸2. This is typically observed in magnetically 
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Table 1

Simulation parameters for runs 1–9. Each run consisted of 7 simula-

tions corresponding to 𝜂=0.05, 0.1, 0.15, 0.2, 0.25, 0.28, 0.3.

Runs 1 2 3 4 5 6 7 8 9

𝐸∕𝐸0 0.01 0.1 0.2 0.5 1 2 5 10 50

Γ 10−3 0.03 0.1 1 3 12 76 300 8000

polarizable particles, which develop weak induced dipoles because the 
magnetic susceptibility of such materials rarely exceeds 1.

For large values of Γ, the correlation effects are significant, and their 
impact on individual dipoles 𝜇𝑖 through the many-body term in Eq. (7)

is not known beforehand. As we will demonstrate in the following sec-

tions, strong correlations could result in dipole clustering and fluid-gas 
demixing in the system under consideration.

3. Details of computer simulations

We employed Langevin Dynamics simulations to study the behavior 
of 𝑁=8192 induced dipoles of diameter 𝜎=2000 𝐴 in a flat 2D di-

electric film under an applied field 𝐸. Molecular dynamics (MD) runs 
with a Langevin thermostat with a friction coefficient 𝛾 = 2 μs−1, and a 
Gaussian white-noise force were performed in a constant NVT ensem-

ble. The equations of motion were numerically integrated with a time 
step Δ𝑡=1.0e-4 𝑡0, where 𝑡0 =

√
4𝜋𝜀0𝑀𝜎3∕𝑒2, and 𝑒 represents the el-

ementary charge. Accounting for an inclusion density of 1 g/cm3, the 
simulation’s time step equates to approximately 1 ns.

The motion of inclusions was confined to the 𝑥𝑦-plane. Standard 
periodic boundary conditions were imposed by filling space with trans-

lational replicas of the fundamental cell in the x and y directions. The 
long-range electrostatic interactions between the induced dipoles were 
handled using the standard Lekner summation algorithm [49].

Initially, all inclusions were randomly distributed at positions 𝑟𝑖, 
𝑖 = 1, ...𝑁 , with no overlapping between particles, |𝑟𝑖 − 𝑟𝑗 | ≥ 𝜎. The 
lateral box size 𝐿 was varied from 358𝜎 to 146𝜎 to adjust the packing 
fraction from 𝜂=0.05 to 𝜂=0.3. This upper limit is much below the 
maximum 2D random packing for circles [50,51] 𝜂𝑟=0.82-0.83, as well 
as the highest packing of circles on a plane 𝜂𝑚=𝜋∕(2

√
3)=0.907.

The applied field was varied within the range of 0.01𝐸0 to 50𝐸0, 
where 𝐸0 = 1 MV/m, allowing us to adjust the coupling parameter Γ
between 10−3 and 8000. The simulation parameters for the 9 runs, each 
corresponding to a specific value of the applied field 𝐸 and consisting 
of a series of 7 simulations with different 𝜂, are summarized in Table 1.

The simulation procedure is a hybrid of combining the determina-

tion of the dipole moments and the motion of the inclusions [52]. In 
detail, it consists of a series of iterations at each time step to stabi-

lize the inclusion dipoles 𝜇𝑖 self-consistently. Initially, a dipole moment 
𝜇0 = 𝛼�⃗� is assigned to all inclusions. Subsequently, during the first iter-

ation, at step 𝑘 = 1, the value of 𝜇(𝑗)
𝑖

= 𝜀𝑚𝛼
∑𝑁

𝑗≠𝑖 �⃗�𝑗 (𝑟𝑖, 𝜇0) is computed 
for all inclusions 𝑖. Here, the field �⃗�𝑗(𝑟𝑖, 𝜇0) is determined by Eq. (25) in 
Appendix A, and 𝜇0 in its argument indicates that the neighboring 𝑗-th 
inclusion possesses a dipole moment 𝜇0, Subsequently, the total dipole 
moment

𝜇𝑖|𝑘=1 = 𝜇0 + 𝜀𝑚𝛼

𝑁∑
𝑗≠𝑖

�⃗�𝑗 (𝑟𝑖, 𝜇0) (11)

is evaluated for all inclusions at the iteration step 𝑘=1. In the subse-

quent iteration step 𝑘 = 2, Eq. (11) is reiterated for all inclusions, as 
follows,

𝜇 | = 𝜇 + 𝜀 𝛼

𝑁∑
�⃗� (𝑟 , 𝜇 | ) (12)
𝑖 𝑘=2 0 𝑚

𝑗≠𝑖
𝑗 𝑖 𝑖 𝑘=1
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Fig. 2. Simulation snapshots for the weak-field run 5 with 𝐸=𝐸0 and 𝜇0=3.3𝑒𝜎. The labels from 1 to 4 in the snapshot for 𝜂=0.05 indicate four sections with 
different levels of the dipole association and orientation information. For this case with no counter-polarized dipoles, the sections 1, 2, and 3 look alike.
After performing certain mathematical manipulations, this equation can 
be expressed as,

𝜇𝑖|𝑘=2 = 𝜇𝑖|𝑘=1 + 𝜀𝑚𝛼

𝑁∑
𝑗≠𝑖

�⃗�𝑗 (𝑟𝑖, 𝜇𝑖|𝑘=1) − 𝜀𝑚𝛼

𝑁∑
𝑗≠𝑖

�⃗�𝑗 (𝑟𝑖, 𝜇𝑖|𝑘=0) (13)

where 𝜇𝑖|𝑘=0 = 𝜇0.

The iterations continue until step 𝑘 = 𝑛,

𝜇𝑖|𝑛 = 𝜇𝑖|𝑛−1 + 𝜀𝑚𝛼
( 𝑁∑

𝑗≠𝑖

�⃗�𝑗 (𝑟𝑖, 𝜇𝑖|𝑛−1) − 𝑁∑
𝑗≠𝑖

�⃗�𝑗 (𝑟𝑖, 𝜇𝑖|𝑛−2)) (14)

provided that the difference between the cumulative sums becomes neg-

ligible. The stabilized induced dipole for inclusion 𝑖 is then assumed to 
be 𝑚𝑖 = 𝜇𝑖|𝑛.

For highly dilute systems with small Γ ≪ 1, one can assume that the 
stabilized dipoles are the same, �⃗�𝑖 = �⃗�. Then, the iterative procedure 
leads to a simple expression for the dipole �⃗�, as shown in Appendix B. 
For the non-dilute systems with moderate values of Γ, the stabilized 
dipoles �⃗�𝑖 are different. Therefore, the considered 2D nanocomposite 
can be assumed as a collection of independent dipoles {�⃗�𝑖} at the sim-

ulation time 𝑡. Then, the force 𝐹𝑖(𝑟𝑖) acting on the 𝑖-th inclusion is 
calculated as,

𝐹𝑖(𝑟𝑖) = −
𝑑𝐻

(
{𝑟},{𝑝},{𝜇}

)
𝑑𝑟𝑖

= − 3
4𝜋𝜀0𝜀𝑚

𝑁∑
𝑗≠𝑖

𝑚𝑖 𝑚𝑗

𝑟5
𝑖𝑗

𝑟𝑖𝑗 (15)

This is followed by updating the positions of all inclusions, 𝑟𝑖, using 
Langevin Dynamics moves. The process then proceeds to a new set of 
iterations for dipole stabilization at the next simulation time step.

In total, the system was first equilibrated under the applied field dur-

ing 𝑁𝑒 = 106 simulation steps. Then, another 𝑁𝑝 =3⋅106 simulation 
590

steps were used as production runs to calculate the needed quantities.
4. Simulation results

4.1. Weak coupling, local counter-polarization, and dipole association 
effects

In this section we will analyze snapshots from the run 5 which corre-

sponds to weak coupling Γ=3. Snapshots for other weak coupling Γ ≤1 
runs 1–4 from Table 1 are relocated to the Supplementary Information 
(SI) because they exhibit similar characteristics as the run 5.

Each snapshot in Fig. 2 is divided into four sections, highlighting the 
particle distribution based on their respective dipole information.

– The bottom right section, referred to as section 1, portrays a standard 
snapshot wherein the inclusions are illustrated as dispersed red dots.

– The bottom left section, referred to as section 2, features the same 
red dots, while additionally highlighting configurations of “associated 
dipole” triplets by enclosing them with green circles. Each associated 
dipole triplet, as depicted schematically in Fig. 1b, comprises a counter-

polarized dipole, i.e. here a negative dipole oriented against the applied 
field due to the influence of negative dipolar fields from neighboring 
dipoles (refer to Eq. (25) in Appendix A for specifics). In Appendixes C, 
D, and E, various configurations are discussed, particularly those with 
critical 𝜂𝑐 where the negative fields of neighboring induced dipoles can 
counteract the applied field 𝐸. Elongated inclusions, however, when 
their 𝑐-axis is aligned with the applied field, may induce dipole moment 
reversal of the target inclusion even at low packing fractions.

– In the top left section, referred to as section 3, each inclusion is 
additionally color-coded based on the direction and magnitude of its 
dipole moment �⃗�𝑖. The corresponding color-bar is provided on the 
snapshot’s right side for reference. These dipole moments are scaled 
as 𝜇∗

𝑖
=𝑚𝑖∕(𝑒𝜎), and the scaled induced dipole from the applied field is 

denoted as 𝜇∗
0 = 𝛼𝐸∕ 

(
4𝜋𝜀0𝑒𝜎

)
, where 𝐸 is measured in [V/m] units.

– Finally, in the top right section, referred to as section 4, only the 
inclusions with negative dipoles �⃗�𝑖 < 0 are depicted, aiding in the iden-

tification of regions demonstrating diamagnetic behavior.

In Fig. 2, at low 𝜂 = 0.05, as observed in section 1, all dipoles are 

randomly dispersed throughout the system. Due to the low value of the 
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Fig. 3. Simulation snapshots for the strong-field run 8 with 𝐸 = 10𝐸 and 𝜇 =33𝑒𝜎.
coupling Γ, interactions remain weak, causing the inclusions to mimic 
behavior akin to a hard sphere fluid. This accounts for the occasional 
formation of cluster-like structures, albeit these structures are transient 
and lack stability.

Section 2 exhibits no associated dipoles whatsoever. In Section 3, 
the coloring of inclusions distinctly reveals that all dipoles are positive, 
albeit their values are smaller than 𝜇0. This reduction stems from the 
collective suppressing effect induced by the dipolar field of neighboring 
inclusions (for specifics, refer to Eq. (25) in Appendix A). Section 4 is 
empty because all induced dipoles register as positive.

As 𝜂 increases, there is a corresponding rise in the count of as-

sociated dipoles, as depicted by the green shading in section 2 for 
𝜂=0.1–0.3. In these packing fractions, the overall coloring in section 
3 gradually transitions from red/orange to yellow/blue, indicating a 
decrease in all dipole values. Simultaneously, the quantity of negative 
dipoles shown in section 4 also increases alongside the increment in 
𝜂. At 𝜂=0.2, nearly half of the inclusions form associations, while at 
𝜂=0.3 this proportion increases to about 95%, and half of the inclu-

sions acquire negative induced dipoles.

4.2. Strong coupling and dipole clustering effects

Simulation snapshots for the strong-field scenario 𝐸 = 10𝐸0, run 8
with Γ=300, are presented in Fig. 3. Snapshots from other strong-field 
runs 6, 7, and 9 with Γ >10 from Table 1 share analogous characteristics 
to run 8 and have consequently been relocated to the SI.

At low 𝜂 ≤ 0.1, dipole association doesn’t occur due to the robust re-

pulsion between induced dipoles. However, when 𝜂 ≥ 0.15, associated 
triplets begin to form clusters, leading to a fluid-gas demixing within the 
system. In the snapshot at 𝜂 = 0.15 in Fig. 3, section 2 illustrates that 
these clusters possess a compact, rounded shape. Section 3 of the same 
snapshot reveals a complex distribution of dipoles, showing a continu-

ous transfer of dipole orientation from the strongly positive background 
to the less positive cluster edges and eventually to the negative cluster 
centers displaying diamagnetic behavior. The density of particles within 
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the cluster is higher than in the background.
0 0

With increasing 𝜂, the clusters amalgamate, creating a continuous 
stripe-like network primarily composed of negative dipoles, evident in 
the snapshot for 𝜂=0.2, section 2. These networks contain pockets filled 
with positive dipoles. Further elevation of 𝜂 to 0.25 generates bubbles 
occupied by very low-density positive dipoles amidst a background of 
densely populated associated dipoles.

The clustering patterns observed in Fig. 3, and in Figs. 6 (run 7) 
and 7 (run 9) in SI, for associated dipoles at 𝜂=0.15 and 0.2 ex-

hibit similarities to microphase separation phenomena found in systems 
characterized by competing interactions: specifically, a combination of 
long-range repulsion and short-range attraction. Such systems include 
diblock copolymers [53–56], 2D colloidal systems [57,58], biological 
macromolecules featuring long-range Coulomb repulsion and short-

range solvent-induced attraction [59], binary mixtures of oppositely 
charged particles with additional short-range attraction among like par-

ticles and short-range repulsion between different ones [60], mixed 
polymer brushes with chain-length asymmetry and solvent selectivity 
[61], and fluid mixtures [62]. In our polarized nanocomposite, these 
competing interactions arise from the repulsion between positively ori-

ented dipoles and the attraction between oppositely oriented dipoles. 
Consequently, akin to other systems with competing interactions, we 
observe a diverse array of equilibrium microphases, including clusters, 
stripes, and bubbles, at specific values of the applied field and particle 
density.

4.3. Phase diagram of the polarized nanocomposite on the (𝐸, 𝜂) plane

The comprehensive phase diagram on the (𝐸, 𝜂) plane, shown in 
Fig. 4, delineates five distinct states represented by various geometric 
symbols.

1. A magenta square represents states characterized by low 𝜂 and 
absence of dipole association, thus featuring entirely positively oriented 
dipoles randomly distributed within the host matrix.

2. A blue circle represents states at intermediate 𝜂, which house 
partially associated and counter-polarized dipoles randomly distributed 

within the host matrix.
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Fig. 4. The predicted phase diagram of the polarized 2D nanocomposite on the (log(𝐸∕𝐸0), 𝜂) plane. Magenta squares are for the classical dipolar system with no 
dipole-dipole association. Blue circles are for systems with partially associated and counter-polarized dipoles without any clustering. Red circles are for fluid-gas 
demixed systems featuring high particle density clusters of counter-polarized dipoles surrounded by low density liquid of positively oriented dipoles. Green circles 
are for systems with voids filled with a few positively oriented dipoles surrounded by a high density crystalline network of counter-polarized dipoles. Orange squares 
are for homogeneous systems with triangular ordering for positively oriented dipoles.

Fig. 5. Dipole distribution function 𝑃 (𝜇) for induced dipoles. (a) A weak-field simulation run 5 with 𝐸 =𝐸0. (b) A strong-field simulation run 8 with 𝐸 = 10𝐸0. Full 
lines: red- 𝜂=0.05, blue- 𝜂=0.1, green- 𝜂=0.15, magenta- 𝜂=0.2, black- 𝜂=0.25. Dashed lines: red- 𝜂=0.28, blue- 𝜂=0.3. Note that the 𝑦-axis is on a log scale.
3. A red circle represents highly poled states with 𝐸 ≥ 5𝐸0 and 
𝜂=0.15, 0.2, which feature clusters of counter-polarized dipoles amidst 
a background of positively oriented dipoles. These states indicate a 
higher particle density within the clusters compared to the background, 
a fingerprint of the fluid-gas demixing.

4. A green circle represents other highly poled states with 𝐸 ≥ 2𝐸0
and 𝜂 ≥=0.2, where the pockets of the dense network of counter-

polarized dipoles are occupied by a few positively oriented dipoles.

5. An orange square represents extremely poled states with 𝐸 =
50𝐸0 and 𝜂 ≤0.1, which feature a crystalline order for the positively 
oriented dipoles homogeneously distributed within the host matrix.

4.4. Probability distribution of dipole moments

To gain a deeper understanding on the polarization tendencies of 
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inclusions in the nanocomposite, we present in Fig. 5 the probability 
distribution 𝑃 (𝜇) of induced dipoles for runs 5 and 8. Detailed 𝑃 (𝜇)
distributions for additional runs are available in the SI. In the case of 
a weak-field polarization run 5, depicted in Fig. 5a, several intriguing 
phenomena unfold. Firstly, with an increase in 𝜂, there’s a noticeable 
shift in 𝑃 (𝜇) towards lower 𝜇∕𝜇0 values. This underscores that with 
a higher coupling parameter Γ, the influence of neighboring induced 
dipoles becomes more prominent, resulting in a suppression of the 
dipole moment within the targeted inclusion. Secondly, the distribu-

tion demonstrates asymmetry, particularly at low 𝜂, where the right 
arm appears sharper in contrast to the left arm. As 𝜂 increases, the sym-

metry of 𝑃 (𝜇) tends to improve, evident in the transition from the red 
solid line to the black dashed line. Thirdly, at 𝜂=0.25, as depicted by 
the solid black line, the distribution peaks at 𝜇 ≈0, indicating the in-

volvement of approximately half of the particles in associated dipolar 

triplets.
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Fig. 6. (a) The dependence of the root mean square fluctuation 𝑀𝑟𝑚𝑠 of the total dipole moment 𝐌 of all inclusions, defined in Eq. (16), on the packing fraction 𝜂. 
(b) The dependence of the renormalized system polarizability �̄� per particle, defined in Eq. (19), on the packing fraction 𝜂. Dashed lines represent the analytically 
predicted �̄� as given by Eq. (20): the black line labeled as 1 corresponds to 𝛽𝑝=1 and 𝐵=8, the red line labeled as 2 corresponds to 𝛽𝑝=1 and 𝐵=13, and the blue 
line labeled as 3 corresponds to 𝛽 =0.1 and 𝐵=13. Further elaboration can be found in the text concluding section 4.5.
𝑝

In the case of a strong-field polarization run 8, observed in Fig. 5b, 
𝑃 (𝜇) shows a double-peaked structure within the range 0.15 ≤ 𝜂 ≤ 0.25. 
These peaks correspond to the fluid-gas demixing characterized by 
dense negative clusters, both in compact forms and as a network. In 
essence, the fluid-gas demixing is evident not only in particle density 
correlations but also in dipole moment correlations. The right peak 
in 𝑃 (𝜇) centers around 𝜇∕𝜇0 ≈ 0.85, while the left peak resides near 
𝜇∕𝜇0 ≈ −0.1. As the packing fraction 𝜂 increases, the right peak di-

minishes, and the remaining peak shifts towards more negative dipole 
values.

4.5. Dipole moment fluctuations and polarizability of the system of induced 
dipoles

Fig. 6(a) shows the root-mean-square fluctuation 𝑀𝑟𝑚𝑠 of the mean 
dipole moment �̄� for the low-field runs 3, 5, and the strong-field runs 
7 and 8. This function is characterized by:

𝑀𝑟𝑚𝑠 =

(
1
𝜏

𝑡0+𝜏

∫
𝑡0

[
𝑀(𝑡) − �̄�

]2)1∕2

𝑑𝑡 (16)

where 𝑀(𝑡) =
∑𝑁

𝑖=1 𝜇𝑖(𝑡) is the instantaneous total dipole moment of 
the system at the simulation time 𝑡, and �̄� = ∫ 𝑡0+𝜏

𝑡0
𝑀(𝑡)𝑑𝑡∕𝜏 is the 

total dipole moment of the system averaged over a time interval of 𝜏
starting from the arbitrary simulation time 𝑡0.

The low-field 𝑀𝑟𝑚𝑠 data, represented by black and red lines in Fig. 6

corresponding to runs 3 and 5, consistently diminish as 𝜂 increases. This 
pattern aligns with expectations since an elevation in Γ, following Lin-

demann’s rule, results in decreased positional fluctuations of inclusions, 
consequently reducing the fluctuation of 𝜇(𝑗)

𝑖
as described in Eq. (6).

Contrarily, the high-field 𝑀𝑟𝑚𝑠 data, represented by the blue and 
green lines in Fig. 6 corresponding to runs 7 and 8, exhibit a non-

monotonic trend with minima occurring at 𝜂=0.25. At this particular 
packing fraction, according to the phase diagram outlined in Fig. 4, 
the pockets within the high-density cluster network of negative dipoles 
manifest as low-density voids housing positive dipoles.

The rise in 𝑀𝑟𝑚𝑠 at higher 𝜂 can be elucidated as follows: Let us 
assume that at some 𝜂𝑎, the voids occupy a fraction 𝜃 of the system’s 
area, and they completely vanish at a higher 𝜂𝑏 > 𝜂𝑎. The average sepa-

ration between the nearest inclusions at these packing fractions can be 
mathematically expressed as:√

1 − 𝜃
√

1
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𝑟𝑎𝑣(𝜂𝑎) ≈ 𝜂𝑎
, 𝑟𝑎𝑣(𝜂𝑏) ≈ 𝜂𝑏

(17)
If the ratio,

𝑅𝑎𝑣 =
𝑟𝑎𝑣(𝜂𝑏)
𝑟𝑎𝑣(𝜂𝑎)

≈
√

𝜂𝑎

(1 − 𝜃)𝜂𝑏
(18)

exceeds one, it is expected that the dipole fluctuations would escalate, 
resulting in 𝑀𝑟𝑚𝑠(𝜂𝑏) > 𝑀𝑟𝑚𝑠(𝜂𝑎). Substituting 𝜂𝑎=0.25 and 𝜂𝑏=0.3 
into Eq. (18), assuming 𝛾 = 1∕2 (refer to Fig. 3 snapshot for 𝜂 = 0.25), 
yields 𝑅𝑎𝑣 ≈ 1.1. This implies that the rise in 𝑟𝑎𝑣 linked to the decrease 
in the void area at higher 𝜂 is not counterbalanced by its reduction due 
to the increase in 𝜂.

In Fig. 6(b) we present the polarizability of the system of induced 
particles calculated as,

�̄� = �̄�

𝑁𝐸
(19)

The polarizability �̄� exhibits a decline with increasing 𝜂, reaching zero 
at 𝜂 = 0.25 for both the low-field runs 3 and 5, as well as for the high-

field runs 7 and 8. Beyond this packing fraction, more than half of 
the inclusions form associations. Zero polarizability indicates a balance 
between dipoles polarized along the applied field and their counter-

polarized counterparts. This equilibrium is reflected in the dipole dis-

tribution 𝑃 (𝜇) illustrated by the black lines in Fig. 5. For 𝜂 >0.25, the 
system’s polarizability becomes negative (𝛼 < 0). It’s worth noting that 
at these higher packings, the induced dipolar field from neighboring in-

clusions becomes markedly non-uniform within the 𝑖-th particle. This 
suggests that volume integration of neighboring fields �⃗�𝑗 is necessary 
for calculating 𝜇𝑖, as mentioned in [26]. However, in our current study, 
we maintain the assumption of homogeneity of �⃗�𝑗 within the 𝑖-th in-

clusion. For a deeper comprehension of negative polarization, more 
intricate simulations involving volume integration of �⃗�𝑗 are required.

Under the assumption that all dipoles are weakly interacting with 
each-other, and thus possess the same stabilized dipole �̄�, using Eq. (26)

in Appendix B, Eq. (31) in Appendix C, and Eq. (37) in Appendix D, we 
arrive at the following analytical expression for the system polarization,

�̄�𝐸0
𝑒𝜎

=
𝜇0

1 + 𝜂𝐵

𝛽𝑝

(20)

Here the coefficient 𝐵=8 for a 2D system of randomly distributed inclu-

sions (see Appendix C), and 𝐵=13 for the triangular lattice of particles 
(see Appendix D). The inclusion shape parameter 𝛽𝑝=1 for spherical 
particles and 𝛽𝑝 <1 for the elongated particles along the applied field 
direction. In Fig. 6(b) the dashed black line 1 corresponds to the analyti-

cally predicted �̄� for 𝐵=8 and 𝛽𝑝=1, the dashed red line 2 corresponds 
to �̄� for 𝐵=13 and 𝛽𝑝=1, and the dashed blue line 3 corresponds to �̄�

for 𝐵=13 and 𝛽𝑝=0.1. In comparison to analytically predicted polar-
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Fig. 7. 2D 𝑆(𝑘) at different packing fractions 𝜂. (a) 𝑆(𝑘) for the low-field run 5 with 𝐸 = 𝐸0, black line- 𝜂=0.05, red line- 𝜂=0.2, blue line- 𝜂=0.3; (b-c) 𝑆(𝑘) for 
the strong-field run 8 with 𝐸 = 10𝐸 , (b) black line- 𝜂=0.05, red line- 𝜂=0.1, blue line- 𝜂=0.15; (c) green line- 𝜂=0.2, red line- 𝜂=0.25, blue line- 𝜂=0.28.
0

izability, the inclusion of dipole-dipole correlations through iterations 
(Eq. (11)–(14)) results in a sharper decline of simulated �̄�. It’s worth 
mentioning that within the range 0.15 ≤ 𝜂 ≤ 0.2 where clustering of in-

clusions occurs, the simulated polarizability �̄� remains positive.

4.6. 2D structure factor and diffraction pictures

The calculated 2D structure factors 𝑆(𝑘) for the weak field run 5 are 
displayed in Fig. 7a. As expected, as 𝜂 increases, the height of the max-

imum in 𝑆(𝑘) rises, and its position shifts to the left. This peak position 
aligns with the average separation distance 𝑟𝑎𝑣 between neighboring 
particles, which decreases while 𝜂 increases.

Moving on to the structure factors for the strong field run 8, shown 
in Fig. 7(b) and (c), a distinct pattern emerges. At 𝜂=0.05 and 0.1 
(depicted by the black and red lines in Fig. 7(b)), 𝑆(𝑘) resembles the 
structure of strongly correlated liquids. For 𝜂=0.15 and 0.2 (blue line 
in Fig. 7b and green line in Fig. 7c), 𝑆(𝑘) exhibits a significant peak at 
small 𝑘𝜎 ≈0.1–0.3, consistent with the observed clustering of associated 
dipoles at these parameters in the snapshots in Fig. 3. The additional 
maxima at 𝑘𝜎 ≈2 and 𝑘𝜎 ≈4 for these packing fractions correspond 
to the average separations between neighboring particles in the low-

density and high-density areas of the cluster network, respectively.

For 𝜂=0.25 and 0.28, where the phase diagram predicts the ap-

pearance of pockets with low density and positive dipoles, a peak at 
low-𝑘 values persists in 𝑆(𝑘), yet the second peak at 𝑘𝜎 ≈2, which 
corresponded to the dipole-dipole separation in low density pockets, 
vanishes. The resemblance between the double-peak appearance in the 
dipole moment distribution 𝑃 (𝜇) (Fig. 5) and the formation of the low-𝑘

peak in 𝑆(𝑘) (Fig. 7(b) and (c)) indicates their correlation.

5. Discussion

This study unveils several intriguing phenomena observed within 
2D nanocomposites containing polarizable inclusions while the dipole-

dipole coupling parameter Γ was altered in a range from 0.001 to 8000 
by varying both the field strength 𝐸 and the packing fraction 𝜂.

Initially, we observed the formation of associated dipole triplets 
when the packing fraction reached 𝜂 ≥ 0.1, across all values of Γ. These 
triplets displayed a unique configuration where the dipole moment of 
the central inclusion opposed the applied field, influenced by the neigh-

boring inclusions’ dipolar fields. Each counter-polarized dipole strongly 
attracted two nearby positive dipoles, rendering these triplets electro-

statically stable. Notably, at weak applied fields (Γ ≤3), these triplets 
remained distinct without merging with others. The calculated dipole 
distribution function 𝑃 (𝜇) in these states displayed a single maximum, 
shifting towards negative dipole moment values as 𝜂 increased.

Subsequently, under strong applied fields (Γ >10) and within a nar-

row packing fraction range (0.15 ≤ 𝜂 ≤ 0.28), these triplets aggregated 
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into clusters. At 𝜂=0.15 and 0.2, compact clusters emerged, hosting 
high-density counter-polarized dipoles surrounded by a sparse back-

ground of positive dipoles. These clusters’ boundaries primarily com-

prised inclusions with minimal to no dipole moments. As the packing 
fraction rose to 0.28 and 0.3, the compact clusters expanded, ultimately 
forming a continuous network of counter-polarized dipole clusters. 
Within this network of high-density inclusions, the pockets displayed 
a sparse collection of positive dipoles. Notably, the distribution func-

tion 𝑃 (𝜇) for these cluster and network states revealed a double-peaked 
structure. One peak represented the background or pocket dipoles at 
positive 𝜇 values, while the other peak corresponded to the clustered 
inverted dipoles or the cluster network at negative 𝜇 values.

In cases where the inclusion retains a constant polarization aligned 
with the applied field, represented by the permanent dipole vector 
𝜇𝑝, the Hamiltonian’s second and third terms in Eq. (1) will integrate 
𝜇𝑖 + 𝜇𝑝 rather than 𝜇𝑖. Hence, the dipoles 𝜇𝑖 + 𝜇𝑝 will undergo sta-

bilization throughout the iterations outlined in Eqs. (11) to (14). To 
counter-polarize these dipoles, higher applied fields are necessary. Con-

sequently, as the dipole 𝜇𝑝 increases, the counter-polarization effect 
weakens, leading to decreased clustering of inclusions.

In instances where 2D surfaces are not ideal, such as those with un-

dulations, the resulting structures depicted in Fig. 4 might be altered. 
The regions surrounding peaks and troughs on such surfaces will cause 
fluctuations in the elevation of the inclusions, potentially fostering at-

traction between induced dipoles. Consequently, areas atop hills and in 
the depths of valleys may exhibit lower inclusion density compared to 
the connecting regions between them. If the undulations are minimal, 
the phase diagram depicted in Fig. 4 may persist. However, under other 
circumstances, more intricate structures are anticipated to emerge.

It’s noteworthy that, beyond its applications in sensing and en-

ergy harvesting, and in understanding the protein conformations in 
cell membranes, as previously discussed in the introduction, the control 
of inclusion clustering holds promise for manipulating plasmonic cou-

plings, especially in the context of long-distance propagation of surface 
plasmon polaritons (SPP) [63–65]. For instance, closely arranged linear 
chains of silver nanoparticles have been shown to facilitate extended 
SPP propagation over significant distances, benefiting from minimal 
radiative losses. In contrast, continuous silver nanowires encounter lim-

itations in SPP propagation distance due to higher losses [66,67].

We expect that the 2D nanocomposite setup can be experimentally 
accessible and are confident that it can serve to deepen our understand-

ing of the mechanisms behind microphase separation due to competing 
interactions. The primary concern in the experiments would be the 
elimination of any non-dipolar interactions, such as the attractive van 
der Waals forces, among the inclusions. This can be achieved by en-

veloping them with inert shells [68].

As a future extension of the current study, we plan to use core-shell 
particle models for higher packing fraction nanocomposites. The iter-

ative dipole stabilization approach used in the current study becomes 
slow at 𝜂 ≥ 0.33 and suffers from strong dipole fluctuations. Therefore, 

to decrease these fluctuations, which mostly stem from the huge dipole 
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moments of the tightly clustered inclusions, each inclusion (a core par-

ticle) will be wrapped by an inert shell with 𝜀𝑠ℎ𝑒𝑙𝑙 = 𝜀𝑚. These shells 
will not allow the particles to strongly attach to each other in associ-

ated dipolar structures, and thus will decrease the fluctuations at higher 
𝜂 values.

The inclusion of hydrophilic and hydrophobic interactions between 
the inclusions, as well as the accounting of their permanent dipole mo-

ments is also planned. This level of modeling is necessary for properly 
analyzing the clustering of dipolar proteins in biomembranes. We also 
assume explicitly accounting for the inclusion polarization through the 
poling of its free surface charges. The simple surface charge model, 
when each dipolar colloid is modeled as two oppositely “charged” par-

ticles embedded in a hard sphere [69], or at the edges of the rod [70], 
might not be sufficient for this purpose. An explicit surface charge 
model is necessary for higher inclusion concentrations, which properly 
reacts to the in-plane and out of the plane components of the dipolar 
fields. Such model can also properly describe the screening of dipolar 
fields in concentrated systems. Recent studies of screening in concen-

trated ionic fluids and electrolytes revealed underscreening of electro-

static correlations [71–74]. Despite the enormous effort in performing 
large-scale simulations and new theoretical investigations, the origin of 
the anomalously long-range screening length in colloidal systems still 
remains elusive. Thus, it is believed that more rigorous polarization 
model is needed at high 𝜂 for poled 2D nanocomposites.

Note that a magnetic field would lead to similar effect within the 
same model by replacing polarizability with magnetization.
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Appendix A. Electrostatics of nanocomposite polarization

Let us consider a nanocomposite with a host matrix of an arbitrary 
form containing polarizable inclusions of arbitrary form placed under 
external field �⃗�. Each inclusion 𝑖 then will develop an induced dipole 
moment 𝜇𝑖 defined as, [22,52,75],

𝜇 = 𝜇 + 𝜇
(𝑗) = 𝛼�⃗� + 𝛼

𝑁∑
�⃗� (21)
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𝑖 0 𝑖 𝑑
𝑗≠𝑖

𝑗
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where the polarization coefficients are given as,

𝛼 = 3𝑓 (𝜀𝑝, 𝛽𝑝)𝜀0𝜀𝑚
𝑉𝑝

1 + (𝜀𝑚 − 1)𝛼𝑧
𝑚

, 𝛼𝑑 = 3𝑓 (𝜀𝑝, 𝛽𝑝)𝜀0𝜀𝑚𝑉𝑝 (22)

and the permittivity contrast function 𝑓 is,

𝑓 (𝜀𝑝, 𝛽𝑝) =
𝜀𝑝 − 𝜀𝑚

3𝜀𝑚 + (𝜀𝑝 − 𝜀𝑚)𝛽𝑝
, 𝛽𝑝 = 3𝛼𝑧

𝑝 (23)

Here 𝑉𝑝 is the inclusion’s volume, 𝛼𝑧
𝑝 and 𝛼𝑧

𝑚 are the depolarization 
factors for the inclusion and the host matrix along the applied field 
direction, respectively. Note that 𝛼𝑑 = 𝜀𝑚𝛼 for a flat and infinite host 
matrix with 𝛼𝑧

𝑚 = 1 out of the plane direction 𝑧. The cumulative field ∑
𝑗 �⃗�𝑗 in Eq. (21) accounts for the total dipolar field of the surrounding 

induced dipoles 𝜇𝑗 at the position of the 𝑖-th dipole,

�⃗�𝑗 (𝑟𝑖) =
1

4𝜋𝜀0𝜀𝑚
1
𝑟3
𝑖𝑗

(
3
𝑟2
𝑖𝑗

((
𝜇𝑗 𝑟𝑖𝑗

)
𝑟𝑖𝑗 − 𝜇𝑗

))
(24)

where 𝑟𝑖𝑗 = 𝑟𝑗 − 𝑟𝑖 is the distance between the two inclusions. For the 
2D nanocomposite placed perpendicular to the applied field, Eq. (24)

reduces to,

�⃗�𝑗 (𝑟𝑖) = −
𝜇𝑗

4𝜋𝜀0𝜀𝑚𝑟3𝑖𝑗
(25)

The negative sign of this field means that the dipolar fields of neighbors 
suppress the dipole moment of the target particle.

Appendix B. Simplified dipole stabilization procedure for very 
dilute systems

Under the assumption that all dipoles are well-separated and weakly 
interact with each-other, and thus possess the same stabilized dipole 
moment �⃗�𝑖=�⃗�, Eq. (11) can be reformulated as,

�⃗� = 𝜇0 − �⃗�
𝛼

4𝜋𝜀0

𝑁∑
𝑗≠𝑖

1
𝑟3
𝑖𝑗

, �⃗� =
𝜇0

1 + 𝛼

4𝜋𝜀0

∑𝑁
𝑗≠𝑖

1
𝑟3
𝑖𝑗

(26)

However, this low-𝜂 approach proves ineffective in densely packed sys-

tems. Take, for instance, a line of inclusions with positions 𝑟𝑖 = 𝑖𝜎𝑙, 
where 𝑖 = 0, ±1, ±2, ... ± 𝑛, and 𝑙 represents the unit vector along the 
line. In this scenario, Eq. (26) is transformed as described in [22],

�⃗� =
𝜇0

1 + 𝛾
𝐶𝐴

𝛽𝑝

(27)

where 𝐶𝐴 ≈ 1.2 is the Apery’s constant, and 𝛽𝑝 denotes for the inclusion 
shape factor, see Appendix A. For spherical particles 𝛽𝑝=1, whereas for 
elongated particles 𝛽𝑝 <1. Additionally, the orientation parameter takes 
values of 𝛾 = 1∕4 for �⃗� perpendicular to 𝑙, and 𝛾 = −1∕2 for �⃗� parallel 
to 𝑙. Consequently, for slightly elongated inclusions with 𝛽𝑝 = 𝐶𝐴∕2, 
this equation results in induced dipoles that tend towards infinity. To 
avoid this situation, the iterative dipole stabilization method, outlined 
in Eqs. (11)–(14), was implemented for the runs 1–9 from Table 1.

Appendix C. Electrostatic field at the position of the 𝒊-th inclusion

Total electrostatic field at position of the 𝑖-th inclusion, with the 
help of Eq. (25) can be written as,

�⃗�𝑖(𝑟𝑖) = �⃗� + 𝜀𝑚

𝑗≠𝑖∑
𝑗

�⃗�𝑗 (𝑟𝑖) = �⃗� −
𝑗≠𝑖∑
𝑗=1

𝜇𝑗

4𝜋𝜀0𝑟3𝑖𝑗
= �⃗�

(
1 − 𝛼

4𝜋𝜀0

𝑗≠𝑖∑
𝑗=1

1
𝑟3
𝑖𝑗

)
(28)
The sum in Eq. (28) can be replaced by the integration as,
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𝑁𝑗∑
𝑗=1

1
𝑟3
𝑖𝑗

=

∞

∫
𝜎

1
𝑟3

𝑑𝑁 =

∞

∫
𝜎

1
𝑟3

8𝜂𝑟𝑑𝑟
𝜎2 = 8𝜂

𝜎3 (29)

where we took into account that the number of dipoles 𝑑𝑁 in the circu-

lar strip of area 𝑑𝑆 = 2𝜋𝑟𝑑𝑟 around the target dipole 𝜇𝑖 can be written 
as,

𝑑𝑁 = 𝑛𝑑𝑆 = 𝑛2𝜋𝑟𝑑𝑟 = 8𝜂𝑟𝑑𝑟
𝜎2 (30)

where 𝑛 is the density of the inclusions 𝑛 =𝑁∕𝑆 = 4𝜂∕(𝜋𝜎2). In Eq. (29)

the hard core of the inclusions is taken into account only around the 
target inclusion. For the second term in Eq. (28) we have,

𝛼

4𝜋𝜀0

𝑁𝑗∑
𝑗=1

1
𝑟3
𝑖𝑗

= 𝛼

4𝜋𝜀0
8𝜂
𝜎3 = 2𝛼𝜂

𝜋𝜀0𝜎
3 (31)

If this term is greater than one, then the total field �⃗�𝑖(𝑟𝑖) becomes neg-

ative, and, as a consequence, the induced dipole 𝜇𝑖 will counter polarize

and become anti-parallel to the applied field �⃗�.

For a flat nanocomposite with 𝛼 = 3𝜀0𝑓𝑉𝑝 and high dielectric 
contrast 𝜀𝑝 ≫ 𝜀𝑚 (which is equivalent to 𝑓 = 1∕𝛽𝑝), assuming 𝑉𝑝 ≈
4𝜋𝜎3∕24, the counter-polarization condition can be written as,

𝛽𝑝 < 𝜂 (32)

This is an interesting result: for spherical particles with 𝛽𝑝=1, no 
counter-polarization is expected at any packing fraction 𝜂 ≤ 𝜂𝑚 for 2D 
triangular lattice of particles. However, for the particles with 𝛽𝑝<1, 
elongated along the applied field, such counter-polarization is possible. 
Also, the lower the packing fraction 𝜂, the more elongated should the 
inclusions be for such counter-polarization to happen.

Appendix D. A correction to the electrostatic field at the position 
of 𝒊-th dipole

In Appendix C, in Eq. (29) the hard core of the inclusions was taken 
into account only around the target inclusion. At high packing fractions 
𝜂 this approach can be corrected by accounting the coordination shells 
with finite number of neighbors in them [76]. It is expected that when 
the dipole-dipole interaction parameter Γ > 1, there is a positional or-

dering of neighbors around the target dipole, i.e. the system enters into 
an ordered hexagonal phase. As a result, the coordination number �̄�𝑘

of the 𝑘-th shell (𝑘 = 1, 2, ..., 𝑚) around the target inclusion,

�̄�𝑘 =

𝑟𝑘

∫
𝑟𝑘−1

𝑑𝑁 = 8𝜂
𝜎2

𝑟𝑘

∫
𝑟𝑘−1

𝑟𝑑𝑟 = 4𝜂
𝜎2

(
𝑟2
𝑘
− 𝑟2

𝑘−1
)

(33)

where 𝑟𝑘 is the radius of the 𝑘-th shell, and 𝑟0=0, will diverge from the 
number of particles 𝑁𝑘 discussed in Appendix C, especially in the low 
𝑘 shells. For example, for the hexagonal ordering we get �̄�1=6 against 
𝑁1 ≈3.64, �̄�2=6 against 𝑁2 ≈7.28, and �̄�3=6 against 𝑁3 ≈3.64. 
Therefore, for the high dipole-dipole interactions, the summation in 
Eq. (31) should be corrected by taking, at least, several coordination 
shells in the hexagonal-like ordering. We here consider the first 8 coor-

dination shells as having hexagonal ordering with the lattice constant 
𝑎𝜎, and treat the rest of the summation in Eq. (31) within the homoge-

neous distribution approach,

𝛼

4𝜋𝜀0

𝑁𝑗∑
𝑗=1

1
𝑟3
𝑖𝑗

= 𝛼

4𝜋𝜀0

[ 8∑
𝛿=1

𝑘𝛿

𝑟3
𝛿

+

∞

∫
4𝑎𝜎

8𝜂
𝜎2

𝑑𝑟

𝑟2

]
= 𝛼

4𝜋𝜀0

[ 8∑
𝛿=1

𝑘𝛿

𝑟3
𝛿

+ 2𝜂
𝑎𝜎3

]
(34)

Putting 𝑟1 = 𝑎𝜎, 𝑟2 =
√
3𝑎𝜎, 𝑟3 = 2𝑎𝜎, 𝑟4 =

√
7𝑎𝜎, 𝑟5 = 3𝑎𝜎, 𝑟6 =√

12𝑎𝜎, 𝑟7 =
√
13𝑎𝜎, 𝑟8 = 4𝑎𝜎, and 𝑘1=6, 𝑘2=6, 𝑘3=6, 𝑘4=12, 
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𝑘5=6, 𝑘6 = 6, 𝑘7 = 12, 𝑘8 = 6 into the sum in Eq. (34), it follows,
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𝛼

4𝜋𝜀0

𝑁𝑗∑
𝑗=1

1
𝑟3
𝑖𝑗

= 𝛼

4𝜋𝜀0

[
9.27
𝑎3𝜎3 + 2𝜂

𝑎𝜎3

]
(35)

For the triangular lattice the lattice side 𝑎 and the packing fraction 𝜂
are connected as,

𝜂 = 𝜋

(2
√
3𝑎2

(36)

Thus, eliminating 𝑎 in Eq. (35), and again assuming high contrast com-

posite with flat matrix,

𝛼 = 4𝜋𝜀0𝜎3 1
8𝛽𝑝

(37)

we have the counter-polarization condition written as,

𝛽𝑝 < 1.68𝜂3∕2 (38)

This equation clearly indicates that, if the dipole-dipole coupling Γ is 
not small, a counter-polarization of the induced dipole is possible for 
spherical dipoles with 𝛽𝑝=1 at the packing fractions 𝜂 larger than the 
critical packing fraction 𝜂𝑐=0.71. For elongated inclusions with 𝛽𝑝 <1, 
the critical 𝜂𝑐 decreases. For example, if 𝛽𝑝 = 0.27, which corresponds 
to the ellipsoid-shaped inclusions obeying the geometry [77],

𝑥2 + 𝑦2 + 𝑧2

3.52
= 1 (39)

we get 𝜂𝑐 = 0.3 from Eq. (38).

Appendix E. Electrostatic field at the position of dipole 𝝁𝒊 in 
triangular lattice

For a perfect 2D triangular lattice with cell size 𝑎𝜎, the summation 
in Eq. (31) can be taken by Madelung-type sums [78],∑ 𝑎3𝜎3

𝑟3
𝑖𝑗

=
∑ 1(√

𝑛2 +𝑚2 + 2𝑛𝑚 cos
(

𝜋

3

))3

=
∑ 1(√

𝑛2 +𝑚2 + 𝑛𝑚
)3 = 6𝜁

(3
2

)
𝑔
(3
2

) (40)

where

𝜁(𝑥) =
∞∑
𝑛=0

1
(𝑛+ 1)𝑥

(41)

and

𝑔(𝑥) =
∞∑
𝑛=0

1
(3𝑛+ 1)𝑥

−
∞∑
𝑛=0

1
(3𝑛+ 2)𝑥

(42)

By carrying the summations in Eqs. (41) and (42) for 𝑥=3/2, we 
get,

𝜁
(3
2

)
= 2.71 , 𝑔

(3
2

)
= 0.74 (43)

Thus, for the Eq. (31), with the help of Eq. (36), we have,

𝛼

4𝜋𝜀0

𝑁𝑗∑
𝑗=1

1
𝑟3
𝑖𝑗

≈ 𝛼

4𝜋𝜀0
12.03
𝑎3𝜎3 ≈ 𝛼

4𝜋𝜀0
13𝜂
𝑎𝜎3 (44)

Assuming again a flat matrix with high dielectric contrast, we now ar-

rive at the counter-polarization condition for the triangular lattice as,

𝛽𝑝 < 1.73𝜂3∕2 (45)

Compared to Eq. (38), it is clear that for the crystalline structure the 
counter-polarization condition can happen at lower 𝜂 for spherical par-
ticles, 𝜂 ≥ 𝜂𝑐=0.69.
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