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Institut für Theoretische Physik II—Weiche Materie,
Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
E-mail: olsen@thphy.uni-duesseldorf.de

Received 24 January 2024
Accepted for publication 29 February 2024 
Published 27 March 2024

Online at stacks.iop.org/JSTAT/2024/033210
https://doi.org/10.1088/1742-5468/ad319a

Abstract. We investigate stochastic resetting in coupled systems involving two
degrees of freedom, where only one variable is reset. The resetting variable, which
we think of as hidden, indirectly affects the remaining observable variable via cor-
relations. We derive the Fourier–Laplace transforms of the observable variable’s
propagator and provide a recursive relation for all the moments, facilitating a
comprehensive examination of the process. We apply this framework to inertial
transport processes where we observe the particle position while the velocity
is hidden and is being reset at a constant rate. We show that velocity reset-
ting results in a linearly growing spatial mean squared displacement at later
times, independently of reset-free dynamics, due to resetting-induced tempering
of velocity correlations. General expressions for the effective diffusion and drift
coefficients are derived as a function of the resetting rate. A non-trivial depend-
ence on the rate may appear due to multiple timescales and crossovers in the
reset-free dynamics. An extension that incorporates refractory periods after each
reset is considered, where post-resetting pauses can lead to anomalous diffusive
behavior. Our results are of relevance to a wide range of systems, such as inertial
transport where the mechanical momentum is lost in collisions with the envir-
onment or the behavior of living organisms where stop-and-go locomotion with
inertia is ubiquitous. Numerical simulations for underdamped Brownian motion
and the random acceleration process confirm our findings.
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1. Introduction

Many processes in nature involve degrees of freedom that evolve in seemingly stochastic
ways [1–3]. In many cases, large jumps in the values of an observed state variable can
occur, which may drastically change the overall dynamics. Stochastic resetting is an
example of large and sudden jumps where a degree of freedom is reset to its initial value
at random times [4–6]. Over the past decade, stochastic resetting has garnered much
attention in the non-equilibrium statistical physics community for multiple reasons.
First, it has been shown to optimize the target search processes, with potential applica-
tions ranging from computer science to the understanding of animal foraging strategies
[7–9]. Furthermore, resetting generates non-equilibrium steady states by trapping the
system in a never-ending loop in the transient dynamical regime. Only recently have
these non-equilibrium states been studied under the lens of stochastic thermodynamics,
giving insights into exactly how far from thermal equilibrium such systems are [10–15].
The majority of past work is based on the dynamics and resetting of a single degree
of freedom. In the presence of multiple state variables, with resetting only acting on a
subset of these variables, a much richer phenomenology can occur. This paper studies
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Figure 1. Sketch of the system under consideration. A set of coupled stochastic
variables (x, y) where only y is being reset (partial resetting) at random times
{ti}. We consider a case where the reset variable is hidden from observations
and infer indirect consequences of the resetting on the dynamics of the observable
variable x.

such partial resetting1 in a coupled two-dimensional system (figure 1), with a particular
focus on the case of position and velocity as is pertinent to physics.

Partial resetting has only been studied in a handful of cases in the past, to the best
of our knowledge. In dimensions higher than one, one can consider the resetting of only
one spatial component [16]. For underdamped Brownian particles, the resetting of either
the position alone or the simultaneous reset of position and velocity has been studied
[17]. Similar types of partial resets have been considered for the random acceleration
processes, where both the propagator and survival probabilities have been investigated
[18, 19]. Since the position of a particle can be seen as the area under the velocity
curve, connections between velocity resetting and large deviation theory can be made.
In large deviation theory, one often studies time-additive observables such as the area
under the curve, which have recently been studied under resetting [20–23]. Velocity
resetting is also natural within active matter, where resetting schemes have recently
been considered, where one can reset both the position and direction of motion, or only
one of these variables [24–28]. Furthermore, the run-and-tumble motion is in itself a
velocity resetting process [29–31]. Recently, a similar problem where an overdamped
particle in a potential is driven by a resetting noise was investigated using Kesten
variables, where both propagators and moments were studied [32].

While much has been known regarding the direct effect of resetting on a state vari-
able, much less is known in general about the indirect effects of partial resetting in
coupled systems. An example of this could be that one (or several) degrees of freedom
are either not experimentally available or simply not of interest. If these unobserved, or

1 One should note that the terminology partial resetting is sometimes also used for reset processes where x → ax, with a ∈ (0,1)
the strength of the resetting. Here we use the phrasing partial in stead to refer to the resetting of parts of the set of degrees of
freedom.
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hidden, degrees of freedom undergo resetting, they may indirectly affect the observed
degrees of freedom through cross-correlations. A situation where this can occur is in the
underdamped dynamics of a Brownian particle. Collisions with the environment or with
a substrate may induce a loss of mechanical momentum, effectively acting as a resetting
of the velocity variable. Its position, however, remains unaffected by the resetting and
only changes its dynamics indirectly through its coupling to velocity. This is different
from the previous studies of resets in underdamped dynamics where only position was
reset, or both variables reset simultaneously [17, 18].

Stochastic resetting of velocities can also be of relevance to various foraging strategies
of animals and insects. An example is the intermittent stopping of flying foragers, such
as bees in flowers, where the velocity is reset to zero but position remains unchanged.
Similar behavior, referred to as stop-and-go locomotion, is ubiquitous in the beha-
vior of macroscopic living organisms. Here, individuals intermittently stop their motion
completely [33, 34], for example in order to save energy [35] or to scout for predat-
ors. This has, for example, been observed in fish motion [36], in chipmunk foraging
strategies [37], and in lizards climbing trees [38]. Such macroscopic systems are, typic-
ally, also heavily prone to inertial effects, which the framework presented in this paper
incorporates by default.

In this paper, we study the dynamics of a two-variable process where only one
variable undergoes resetting. We consider one variable to be the observed variable, which
does not undergo resets, whereas the other variable undergoes Poissonian resetting at
a constant rate and is for brevity referred to as the hidden variable. We derive explicit
expressions for the Fourier–Laplace transforms of the observed variables’ propagator and
derive from it a hierarchy of moments. We use this framework to study the dynamics of
inertial particles when only the velocity is being reset. We show that when the velocity
is reset to zero, at late times the mean squared displacement is always linear with an
effective diffusivity that depends on the resetting rate. Extensions to the case where
refractory periods are included after each reset are presented, wherein the late-time
process may become anomalous if the refractory times are power-law distributed.

This paper is organized as follows. Section 2 discusses the propagator for two generic
coupled variables when only one of them is being reset. Section 3 applies these results
in the case of inertial transport processes, and discusses effective transport coefficients
under velocity resetting. Section 4 extends these results in the case where refractory
periods are included after each reset. Section 5 provides a concluding discussion and
potential outlooks.

2. Propagators in coupled systems with resetting

For the sake of simplicity, we consider two coupled degrees of freedom (x, y), where we
observe x, whereas the variable y experiences resets. Extensions to multiple variables
are straightforward as long as all variables that undergo resetting do so simultaneously,
in which case y may be seen as a collective variable. We denote the full propagator
of the system in the presence of resetting by pr(x,y, t|x0,y0), where (x0,y0) are the
initial conditions at t = 0. The starting point of our analysis is the well-known renewal
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framework for resetting processes [6], which we augment to the present case of partial
resetting. The last renewal equation can be used to express the propagator in terms of
the propagator of the underlying, or reset-free, system p0(x,y, t|x0,y0) as follows:

pr (x,y, t|x0,y0) = e−rtp0 (x,y, t|x0,y0)

+ r

ˆ t

0

dτ

ˆ
dx ′dy ′pr (x ′,y ′, t− τ |x0,y0)p0 (x,y,τ |x ′,y0)e−rτ . (1)

Here, the intuition is the same as in most renewal processes; the first term corresponds to
realizations of the system where no resetting occurs. These paths occur with probability
e−rt, and the system evolves with the r = 0 propagator. The second term considers
general trajectories (with resetting) up to the time of the last resetting t− τ . The
resetting occurs with probability rdτ . At this instant, the system is in some arbitrary
state (x ′,y ′). As only y is reset, the system proceeds to evolve toward (x, y) from the
new initial condition (x ′,y0). In this last time interval τ , there is no resetting, again
taking place with probability e−rτ .

Another item of note regarding equation (1) is the fact that all memory is deleted
at the instance of reset, except for the variable x. Indeed, even if there were addi-
tional time dependencies coming from external effects, such as dynamical disorder from
a changing environment or diffusion with a time-dependent drift, for example, even
the environmental evolution must be reset for the full renewal structure assumed in
equation (1) to be valid. This is simply due to the fact that the free propagator which
links (x ′,y0) → (x,y) over the duration (t− τ , t) in equation (1) only depends on the
duration τ . Generally, time-heterogeneity can break the renewal structure one often
desires while working with resetting processes. Often, it is assumed that any time-
dependent parameters or annealed disorder is simultaneously reset with the system
variables to make the system fully renewing [25, 39, 40]. In the case of an overdamped
scaled Brownian motion, where the temperature either grows or decreases in time,
non-renewal resetting has been studied recently, where the time dependence of the
temperature is allowed to persist through a resetting event [41].

We are interested in the marginalized propagator of the observable variable xt, which
we denote:

℘r (x, t|x0,y0) ≡
ˆ

dypr (x,y, t|x0,y0) (2)

and similarly for the process without resets. The indirect effect of resetting on the
variable x can then be obtained by integrating over y in the above renewal equation:

℘r (x, t|x0,y0) = e−rt℘0 (x, t|x0,y0)

+ r

ˆ t

0

dτe−rτ

ˆ
dx ′℘r (x ′, t− τ |x0,y0)℘0 (x,τ |x ′,y0) . (3)
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To proceed, we restrict our attention to a class of spatially homogeneous systems,
wherein the underlying (r = 0) propagator satisfies:

℘0 (x,τ |x ′,y0) = ℘0 (x−x ′,τ |y0) . (4)

This casts the renewal equation of a convolution form, and we may readily apply a
Fourier transform in space and a Laplace transform in time to solve the equation. We
use the conventions:

Ls [f (t)] ≡ f̃ (s) =

ˆ ∞

0

dte−stf (t) , (5)

Fs [g (x)] ≡ ĝ (k) =

ˆ ∞

0

dte−ikxg (x) . (6)

Applying a Fourier–Laplace transforms to the above, we find:

ˆ̃℘r (k,s|x0,y0) =
ˆ̃℘0 (k,s+ r|x0,y0)

1− r ˆ̃℘0 (k,s+ r|y0)
. (7)

This expresses the marginalized propagator of the observable variable x under resetting
of the non-observable y to the corresponding propagator without resetting. Note that
only the numerator is conditioned on both initial conditions, whereas the term in the
denominator should be taken with x 0 = 0 as a consequence of the homogeneity assump-
tion. Propagators of this form were recently studied in detail for fractional Brownian
motion in [23]. Here, we use equation (7) to derive a hierarchy of moments from which
exact expressions for the coefficients governing late-time scaling is provided. We later
extend these results to also allow refractory periods of arbitrary durations after each
reset.

2.1. Hierarchy of moments

Inverting the above solution in equation (7) can be exactly arduous in many cases, as
the marginalized propagators even in simple coupled systems have complex Fourier–
Laplace transforms. To make further progress, we derive from it a general expression
for the moments of the process xt. First, note that moments can be computed from
Fourier transforms of the probability density as:

⟨xn|x0,y0⟩t =
∂n

∂ (ik)n
℘̂r (k, t|x0,y0)

∣∣∣∣
k=0

. (8)

As we have the Fourier–Laplace transform, we will in our case find:

˜⟨xn|x0,y0⟩s =
∂n

∂ (ik)n
ˆ̃℘r (k,s|x0,y0)

∣∣∣∣
k=0

, (9)

https://doi.org/10.1088/1742-5468/ad319a 6

https://doi.org/10.1088/1742-5468/ad319a


Dynamics of inertial particles under velocity resetting

J.S
tat.

M
ech.(2024)

033210

where ˜⟨xn|x0,y0⟩s = Lt→s [⟨xn|x0,y0⟩t] denotes Laplace transforms. To obtain expressions
for the moments from equation (7), we first re-write it as:

ˆ̃℘r (k,s|x0,y0)
[
1− r ˆ̃℘0 (k,s+ r|y0)

]
= ˆ̃℘0 (k,s+ r|x0,y0) (10)

simply to avoid having to deal with quotients. Using the generalized product rule for
higher-order derivatives, we have:

∂n

∂ (ik)n
ˆ̃℘0 (k,s+ r|x0,y0) =

n∑
ℓ=0

(
n

ℓ

)
∂(n−ℓ)

∂ (ik)(n−ℓ)
ˆ̃℘r (k,s|x0,y0)

× ∂ℓ

∂ (ik)ℓ

[
1− r ˆ̃℘0 (k,s+ r|y0)

]
. (11)

Setting k = 0 and using the expression for the moments, we have:

˜⟨xn|x0,y0⟩
(0)

s+r =
n∑

ℓ=0

(
n

ℓ

)
˜⟨xn−ℓ|x0,y0⟩s

[
δℓ,0 − r⟨̃xℓ|y0⟩

(0)

s+r

]
, (12)

where the superscript (0) denotes moments for the underlying process with r = 0.
Rearranging gives:

˜⟨xn|x0,y0⟩s =
s+ r

s
˜⟨xn|x0,y0⟩

(0)

s+r +
s+ r

s

[
r

n∑
ℓ=1

(
n

ℓ

)
˜⟨xn−ℓ|x0,y0⟩s⟨̃xℓ|y0⟩

(0)

s+r

]
. (13)

This recursive relation can be used to iteratively construct any moment of the process
xt given the lower-order moments and the moments of the r = 0 case, which are assumed
to be known. We emphasize that this result can be useful when the Fourier–Laplace
transforms of the propagator itself is hard to obtain, whereas if ˆ̃p0(k,s|x0,y0) is known
one can simply expand equation (7) in powers of k to identify the moments. We also

note that when r = 0, the above equation reduces to ⟨xn|x0,y0⟩s = ⟨xn|x0,y0⟩(0)
s as it

should.

3. Transport processes: crossover from anomalous to normal diffusion

For transport processes, the relevant physical variables are often the position xt and
velocity vt of a particle, satisfying ẋt = vt. Here, we consider the effect of velocity reset-
ting on spatial transport by using equation (13). This is of relevance to a wide range
of systemsfor example, for particles with inelastic collisions with an environment or
substrate, or in foraging processes where animals intermittently stop (e.g., to collect
nutrients or scout for predators) before re-starting their motion from zero velocity but
unchanged position. Starting from the hierarchy in equation (13), we derive general
expressions for the effective drift and diffusivity and consider in more detail the case
where the underlying process shows anomalous diffusion.

https://doi.org/10.1088/1742-5468/ad319a 7
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3.1. Effective transport coefficients

To characterize transport, we are interested in the first two spatial moments:

˜⟨x|x0,v0⟩s =
s+ r

s

[
˜⟨x|x0,v0⟩

(0)

s+r +
r

s
⟨̃x|v0⟩

(0)

s+r

]
, (14)

˜⟨x2|x0,v0⟩s =
s+ r

s
˜⟨x2|x0,v0⟩

(0)

s+r +
s+ r

s

r

s
⟨̃x2|v0⟩

(0)

s+r

+
s+ r

s

[
2r ˜⟨x|x0,v0⟩s⟨̃x|v0⟩

(0)

s+r

]
, (15)

which contain information regarding the effective drift and dispersion of the spatial
variable. Without any loss of generality, let us consider x 0 = 0. Then, the first moment
can be written compactly as:

˜⟨x|0,v0⟩s =

(
s+ r

s

)2

˜⟨x|0,v0⟩
(0)

s+r. (16)

At late times, corresponding to small values of s, the s−2 pole dominates, giving rise to
a linear growth in time. The inverse Laplace transform can be calculated in terms of
residues as:

⟨x|0,v0⟩t = L−1
s→t

{(
s+ r

s

)2

˜⟨x|0,v0⟩
(0)

s+r

}

=
∑

poles {si}

Resi

[(
s+ r

s

)2

˜⟨x|0,v0⟩
(0)

s+re
st

]
, (17)

where the poles {si} are those of equation (16). The poles at non-zero values of s give
rise to exponentially decaying terms. Hence, the late-time behavior is extracted from
the pole at zero, in which case the residue reads:

⟨x|0,v0⟩t = lim
s→0

∂s

[
(s+ r)2 ˜⟨x|0,v0⟩

(0)

s+re
st

]
= r2 ˜⟨x|0,v0⟩

(0)

r t+ . . . (18)

where the terms + . . . represent terms that are either approaching a constant or vanishing
at late times. The effective drift at late times is then calculated as:

Veff ≡ lim
t→∞

⟨x|0,v0⟩t
t

= r2 ˜⟨x|0,v0⟩
(0)

r . (19)

Hence, velocity resetting to a non-zero value of velocity v 0, which typically results in

non-zero ⟨x|0,v0⟩(0)
t , will result in a drift at late times, as is expected2. This can be seen

2 It should be noted that one may in principle reset velocity to a non-zero value v 0 and yet obtain a vanishing mean ⟨x|0,v0⟩(0)
t .

For example, in the presence on a constant external drift one could reset to a velocity that exactly opposes the drift.
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as a rectification effect due to velocity resetting. The physical intuition of equation (19)
is obtained by noting that the late-time behavior of the mean position can be written:

⟨x|0,v0⟩t ≃ Vefft = (rt)

ˆ
dtre−rt⟨x|0,v0⟩(0)

t (20)

which is nothing but the mean number of resets n = rt in time t, times the mean step
length during an inter-reset epoch.

In the remainder of this section, we consider for simplicity symmetric processes with
vanishing odd moments such that no drift is present Veff = 0, and set v 0 = 0. Proceeding
similarly to the effective drift, we can derive an expression for the effective diffusivity.
The second moment in the Laplace space reads:

˜⟨x2|0,0⟩s =

(
s+ r

s

)2

˜⟨x2|0,0⟩
(0)

s+r. (21)

By the same logic, the s−2 pole gives rise to a linearly growing mean-squared-
displacement. Again, the real-time mean squared displacement can be expressed as
a sum over poles si of equation (21):

⟨x2|0,0⟩t = L−1
s→t

{(
s+ r

s

)2

˜⟨x2|0,0⟩
(0)

s+r

}

=
∑

poles {si}

Resi

[(
s+ r

s

)2

˜⟨x2|0,0⟩
(0)

s+re
st

]
. (22)

The dominant late-time behavior once again comes from the second-order pole at s = 0,
resulting in:

⟨x2|0,0⟩t = lim
s→0

∂s

[
(s+ r)2 ˜⟨x2|0,0⟩

(0)

s+re
st

]
= r2 ˜⟨x2|0,0⟩

(0)

r t+ . . . . (23)

Hence, the effective diffusivity can be calculated as:

Deff ≡ lim
t→∞

⟨x2|0,0⟩t
2t

=
r2

2
˜⟨x2|0,0⟩

(0)

r . (24)

As for the effective drift, a natural physical interpretation of this in terms of the asymp-
totic behavior of the mean squared displacement can be obtained by noticing that:

⟨x2|0,0⟩t ≃ 2Defft = rt

ˆ ∞

0

dtre−rt⟨x2|0,0⟩(0)
t (25)

which is the mean number of resets n times the mean growth of the second moment dur-
ing an inter-reset epoch. We focus on the generality of this result, as long as the system
considered is spatially homogeneous, and the full renewal structure of equation (1) is
satisfied, the process under velocity resets will display normal diffusion with the above
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effective diffusivity, even if the reset-free system shows anomalous diffusion. We discuss
this further in later sections.

Underdamped Brownian motion: as a simple application of the above formula,
we consider velocity resetting for an underdamped Brownian particle. This can be
viewed as a minimal model for a particle moving through a complex environment, where
intermittently the particle collides with the environment and loses its momentum [42].
The particle obeys the coupled equations:

dxτ = vτdt, (26)

dvτ = −γvτdt+
√

2kBTγdW , (27)

where dW is an increment in the Wiener process and γ the friction coefficient. Here,
we have set mass to unity. The marginalized position distribution reads [17]:

℘0 (x, t|x0,v0) =
1√

2πΣ2
t

exp

(
−(x−⟨xt⟩)2

2Σ2
t

)
, (28)

where the variance and mean of the density reads:

Σ2
t = D0τγ

(
2t

τγ
+ 4e−t/τγ − e−2t/τγ − 3

)
, (29)

⟨xt⟩ = x0 + v0τγ

(
1− e−t/τγ

)
, (30)

with τγ = 1/γ being the inertial timescale and D0 = kBT/γ. From this, one can easily
calculate the second moment in the Laplace space, resulting in:

˜⟨x2|0,0⟩
(0)

s = −3D0

γs
+

4D0

γ (γ + s)
− D0

γ (2γ + s)
+

2D0

s2
, (31)

where we set x0 = v0 = 0, so that Veff = 0. Using equation (24), one immediately finds:

Deff

D0
=

(
1 + ζ

3 + ζ

2

)−1

. (32)

Here, we introduce the dimensionless variable ζ = r/γ. As expected, Deff = D0 is
obtained when ζ = 0, which can be achieved either by r = 0 or in the high-friction limit
γ →∞. The latter case highlights the fact that for Brownian particles, a non-trivial
effective diffusivity only occurs in the presence of inertial effects, whereby the particle
must accelerate after each reset. We also observed that velocity resetting suppresses
spatial transport, and Deff = 0 as r→∞. This is verified using numerical simulations
in figure 2.

3.2. When the underlying process is anomalous

The above results have interesting implications for transport processes in (x, v) that
would be anomalous in the absence of resetting. Anomalous diffusion processes with
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Figure 2. Effective diffusivity for an underdamped Brownian motion undergoing
velocity resetting, as a function of re-scaled resetting rate ζ = r/γ. Dashed black
lines show exact theory (equation (32)), whereas points show simulated data, using
D0 = γ = 1.

resetting have been studied recently for overdamped systems in the context of ergodicity
breaking and restoration [43–46]. Here, we investigate the effects of velocity resetting
in underdamped anomalous systems.

For anomalous diffusion processes, the underlying process satisfies in the simplest
case:

⟨x2|0,0⟩(0)
t = D0t

α, (33)

with diffusion exponent α taking any positive real value. Such processes are present
in a wide range of systems, with classical examples being the transport of Brownian
particles in complex environments, such as fractals or media with power-law friction
[47–53]. Anomalous diffusion has also been observed in granular systems, such as in
the velocity profile of fluid-driven silo discharge [54], in granular gases near a shear
instability [55], and in the height fluctuations in graphene [56]. In such cases, one often
expects subdiffusive processes α< 1, whereas there are also cases where superdiffusion
with α> 1 occurs, such as in Lévy flights, random acceleration processes, tracers in
the turbulent flow, active particles with time-dependent self-propulsion forces, and in
diffusion with density-dependent diffusivity [57–62]. For a review of theoretical models
of anomalous diffusion, see, for example [63]. Although most of these studies consider
particles in the overdamped limit, with no coupled variables, many models can be
extended to the underdamped case and studied under the framework presented here.

The Laplace transforms in the time of equation (33) reads ⟨x2|0,0⟩(0)
s =

D0s
−(1+α)Γ(1 +α). Using equation (21), this leads directly to:

˜⟨x2|0,0⟩s =
D0Γ(α+ 1)(r + s)1−α

s2
. (34)
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Inverting gives the full time dependence of the mean-squared-displacement:

⟨x2|x0,v0⟩t = (α− 1)D0r
−α (αΓ(α,rt)−Γ(α+ 1))

+ (α− 1)αD0r
1−α (Γ(α− 1)−Γ(α− 1,rt)) t, (35)

where Γ(x,z) is the (upper) incomplete Gamma function. At early times, as resetting has
not yet had time to occur, the mean-squared-displacement behaves as in the underlying
system. Generally, the short-time behavior of the mean squared displacement can be
obtained by looking at large values of its Laplace variable. For s≫ r in equation (21) we

see that ⟨x2|0,0⟩s = ⟨x2|0,0⟩(0)
s . Hence, in this case, we have ⟨x2|0,0⟩t = D0t

α. At later
times, we see that a linear growth takes over, in agreement with what we predicted
more generally (see equations (23) and (24)). The effective diffusivity can be calculated
either from equation (24) or directly from equation (35), yielding:

Deff ≡ lim
t→∞

⟨x2|0,0⟩t
2t

=
D0Γ(α+ 1)

2rα−1
. (36)

We see that anomalous diffusion processes with diffusion exponent α become normal
under velocity resetting, with an effective diffusion coefficient scaling with resetting
rate as Deff ∼ r1−α. For superdiffusive processes, the effective diffusivity decreases as a
function of resetting rate, whereas for subdiffusive processes it grows with increasing
resetting rate. The fact that subdiffusive processes can enhance their diffusivity by
resetting originates in the full renewal structure of equation (1). Since subdiffusion
often occurs for processes that slow down substantially over time, such as for single-file
diffusion [64, 65], restarting to a state of higher motility can be beneficial. The crossover
time t* where the linear growth starts to dominate over the anomalous growth can
be identified by matching the late-time regime with the effective diffusivity given by
equation (36) with the early-time growth D0t

α, resulting in:

t* =

[
Γ(α+ 1)

2

] 1
α−1

r−1. (37)

Since the resetting timescale r−1 determines when the mean squared displacement
should cross over to linear growth, this proportionality is sensible.

Random acceleration process: a concrete example of the above could be the
random acceleration process [59]

ẋ = v, (38)

v̇ =
√

2η (t) , (39)

where η(t) is a Gaussian white noise with correlator ⟨η(t1)η(t2)⟩ = δ(t1 − t2), and where
we set the noise strength to unity for simplicity. The marginalized process ℘0(x, t|x0,v0)
is known to have a Gaussian propagator [18, 59]

℘0 (x, t|0,0) =

√
3

4π t3
exp

(
− 3

4t3
x2

)
, (40)
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Figure 3. Comparisons of theory (dashed black lines) and simulated data for a
random acceleration process. (a) Mean squared displacement shows a clear cros-
sover from anomalous α= 3 diffusion to normal diffusion with α= 1 at times larger
than the crossover time t*(gray vertical line). (b) Effective diffusivity at late times
scales as Deff ∼ r−2, as predicted by equation (36). (c) Velocity auto-correlation
functions showing exponential tempering. Solid colored lines are simulations, while
black dashed line corresponds to equation (44). Resetting rate is set to unity unless
stated otherwise.

with a mean squared displacement that grows as a cubic in time ⟨x2|0,0⟩(0)
t = 2

3t
3, that

is α= 3 and D0 = 2/3 in the above calculation. The effective diffusivity after resetting
reads Deff = 2/r2, with a crossover time t* =

√
3/r. This result was also reported in

[23] obtained by other methods. Here, the full mean-squared-displacement can easily be
obtained from equation (35), which we show in figure 3(a), where a clear crossover from
anomalous α= 3 to normal α= 1 is seen. The predicted Deff ∼ r−2 scaling also matches
perfectly with simulated data as seen in figure 3(b).

3.3. Tempered correlation functions

The emergence of normal diffusion independently of the anomalous nature of the under-
lying process can be understood as a consequence of resetting-induced tempering of the
velocity auto-correlation functions. It is well known that systems with exponential (or
sufficiently strong power law) cutoffs display a crossover from anomalous to normal
diffusion at late times [66].

For transport processes, the position is coupled to velocity simply through ẋ = v,
implying that the mean squared displacement in general comes from the temporal beha-
vior of the velocity correlation functions:

⟨(x−x0)
2⟩t = 2

ˆ t

0

dτ2

ˆ τ2

0

dτ1Cr (τ1,τ2) , (41)

where we introduced Cr(τ1,τ2) = ⟨vτ1vτ2⟩. We will by C0(τ1,τ2) denote the velocity auto-
correlations in the absence of resetting. For correlations that decay sufficiently fast, the
system exhibits normal diffusion and the above equation can be turned into a Green–
Kubo relation for the diffusion coefficient. If the correlation functions decay too slowly,
or even grow in time, one expects anomalous diffusion.
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Similarly, to the probability density, correlation functions are known to satisfy a
renewal equation of the type [6, 67]:

Cr (t1, t2) = e−rt2C0 (t1, t2) + re−r(t2−t1)

ˆ t1

0

dτe−rτC0 (τ , t2 − t1 + τ) . (42)

Here we rely on the assumption that the position is coupled to the velocity, but not vice
versa, allowing a simple renewal equation for the velocity correlations. This is normal
for most models of Brownian motion and has been utilized in the past where considering
underdamped Brownian motion under partial resetting of position alone [17]. We already
show that the inclusion of resetting tempers the correlations by including an exponential
cutoff at a characteristic time r−1 already in the first term.

Returning again to a concrete example where the underlying process is anomalous
of the type equation (33), we consider correlation functions of the form:

C0 (t1, t2) =
α(α− 1)D0

2
min{t1, t2}α−2 . (43)

This correlation function is chosen so that by applying equation (41) it gives rise to
a mean squared displacement growing anomalously in time with exponent α. Under
resetting, the new correlator equation (42) reads:

Cr (t1, t2) =
α(α− 1)D0

2
e−r(t2−t1)

(
r2−α (Γ(α− 1)−Γ(α− 1,rt1)) + tα−2

1 e−rt1
)

,

where we assumed t2 ⩾ t1. To clearly see the tempering, consider Cr(t, t+ ∆) with ∆ ⩾ 0
a lag variable. For t≫ r−1 we then find:

Cr (t, t+ ∆) ≃ Γ(α+ 1)D0r
2−α

2
e−r∆, (44)

which shows a clear cutoff scale r−1. This exponential behavior is shown for the ran-
dom acceleration process in figure 3(c), where, normally, the velocity correlations obey
equation (43) with α= 3.

3.4. The effect of real-time crossovers

As a final example, we consider the case where the underlying system has a crossover
from one dynamical regime to another at a crossover time tc. We assume

⟨x2⟩(0)
t = 2Dαt

αθ (tc− t) + 2Dβt
βθ (t− tc) . (45)

The effective diffusivity can again be calculated from equation (24), resulting in

Deff (r) = Dαr
1−αγ (α+ 1,rtc) +Dβr

1−βΓ(β + 1,rtc) , (46)

where Γ(·) and γ(·) are the upper and lower incomplete Gamma functions respectively.
We note that while γ(a,z) vanishes as z → 0, Γ(a,z) simply approaches Γ(a) in this
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Figure 4. Sketch of the system considered in this paper. (a) Typical dynamics of
a forager consists of exploration phases interrupted by refractory periods of no
motion. (b) Sketch of one dimension time-series for position and velocity, showing
a refractory period of duration τ following a resetting at time t1. Here we assume
that velocity is reset to zero, so that no motion occurs during the refractory period.

limit. A converse behavior holds for z →∞. Hence, the incomplete gamma functions
give more or less weight to the two scaling behaviors depending on the value of the
resetting rate. In particular, the effective diffusivity changes the scaling behavior as
a function of resetting rate r at a crossover value rc = t−1

c . In the case r≪ t−1
c , the

system resets so rarely that the late-time dynamical regime can always be explored,
and Deff(r) ∼ r1−β. Similarly, when r≫ t−1

c typical trajectories only explore the first
dynamical regime, and Deff(r) ∼ r1−α.

The underdamped Brownian particle described by equations (26) and (27) yet again
serves as a good example for the case with a crossover. In this case, it is known that for a
particle initially at rest, the short-time mean squared displacement has a leading-order
cubic behavior [68]

⟨x2⟩(0)
t =

4γ2D0

3
t3 +O

(
t4
)

, (47)

while at late times it crosses over to normal diffusion ⟨x2⟩(0)
t ∼ t. Hence, we expect an

effective diffusivity that is initially constant before decaying as r−2. This is indeed what
is observed in figure 2, or equivalent in equation (32).

4. Effects of refractory periods

In the case of inertial foragers that perform stop-and-go locomotion, velocity resets to
v 0 = 0 are often followed by inactive periods (see figure 4). In the context of resetting,
such idle times after the resetting events are referred to as refractory times [69, 70]. In
overdamped systems with a single degree of freedom, anomalous diffusion behavior has
been observed for particular choices of refractory and inter-reset statistics [71]. In this
section we include the effect of such refractory times in underdamped systems and show
how normal Poissonian resets of velocity can also lead to anomalous diffusion.
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4.1. Exact propagator

For the case of velocity resetting without refractory times, we start by investigating
the renewal equation. The first renewal equation for the propagator can be written as
follows:

pr (x,v, t|x0,v0) = e−rtp0 (x,v, t|x0,v0)

+ r

ˆ t

0

dt1e−rt1

ˆ t−t1

0

dτW (τ)

ˆ
dydup0 (y,u, t1|x0,v0)pr (x,v, t− t1 − τ |y,v0)

+ r

ˆ t

0

dt1e−rt1

ˆ ∞

t−t1

dτW (τ)

ˆ
dydup0 (y,u, t1|x0,v0)δ (v− v0)δ (x− y) . (48)

Here, the first two terms have the same interpretation as before, corresponding respect-
ively to paths without resets and paths with resets. The only difference is the inclusion
of a refractory time τ after the first reset event. The third term corresponds to paths
that at time t end in the refractory phase.

As before, we will assume spatial homogeneity, which means we can do so without
loss of generality set x 0 = 0. To ease the notation, as before, we suppress this from
the propagator so that pi(x,v, t|x0 = 0,v0) = pi(x,v, t|v0), with i = r,0. Integrating the
above initial renewal equation over velocity v, we find the position distribution:

℘r (x, t|v0) = e−rt℘0 (x, t|v0)

+ r

ˆ t

0

dt1e
−rt1

ˆ t−t1

0

dτW (τ)

ˆ
dy℘0 (y, t1|v0)℘r (x, t− t1 − τ |y,v0)

+ r

ˆ t

0

dt1e
−rt1

ˆ ∞

t−t1

dτW (τ)℘0 (x, t1|v0) . (49)

Invoking spatial homogeneity, we write ℘r(x, t− t1 − τ |y,v0) = ℘r(x− y, t− t1 − τ |v0).
Taking a Fourier transform in space, we obtain:

℘̂r (k, t|v0) = e−rt℘̂0 (k, t|v0)

+ r

ˆ t

0

dt1e
−rt1℘̂0 (k, t1|v0)

ˆ t−t1

0

dτW (τ) ℘̂r (k, t− t1 − τ |v0)

+ r

ˆ t

0

dt1e
−rt1℘̂0 (k, t1|v0)

ˆ ∞

t−t1

dτW (τ) . (50)

Laplace transforming equation (50) results in:

ˆ̃℘r (k,s|v0) = ˆ̃℘0 (k,s+ r|v0) + rW̃ (s) ˆ̃℘0 (k,s+ r|v0) ˆ̃℘r (k,s|v0)

+ r
ˆ̃℘0 (k,s+ r|v0)

s

[
1− W̃ (s)

]
. (51)

Solving for the propagator in the presence of resetting, we get the closed form expression:

ˆ̃℘r (k,s|v0) =
ˆ̃℘0 (k,s+ r|v0)

1− rW̃ (s) ˆ̃℘0 (k,s+ r|v0)

(
1− r

s

[
1− W̃ (s)

])
. (52)
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This gives an exact expression for the spatial propagator for any distribution of refract-
ory times. One can indeed verify that the propagator is normalized ˆ̃℘r(0,s|v0) = 1/s.
Furthermore, in the case without any refractory period W (τ) = δ(τ), we recover previ-
ous expressions for the propagator under velocity resets.

If one cares only about late-time dynamical behavior, one may naively expect that
this reduces to a simple continuous time random walk (CTRW). In this case, the propag-
ator in the Fourier–Laplace space is given by the famous Montroll–Weiss formula, which
relates the propagator to the distribution of jump lengths and the distribution of the
waiting times in between each jump [72]. The classical Montroll–Weiss theory assumes
independent jump lengths and waiting times, although extensions to correlated cases
have been considered [73]. In the present case, the waiting time is given by the combin-
ation tE + τ , with tE the exploration time and τ the duration of the refractory phase.
The jump length, however, is determined both by the underlying propagator in the
exploration phase and the duration of the exploration phase. Hence, the jump lengths
depend only on the time tE of the exploration phase and not on the duration of the
refractory times. Therefore, velocity resetting with refractory times can be seen as a
form of CTRW with a particular correlation between the jump lengths and the wait-
ing times. Of course, another strong contrast to the CTRW case is that the dynamics
studied here is fully time-resolved and does not perform sudden discrete jumps.

4.2. Mean squared displacement

The moments of position can be obtained from equation (52) by differentiation as before,
through equation (8). Assuming that we are dealing with a process where the first
moment always vanishes, which is, typically, the case if v 0 = 0, we can proceed as in
earlier sections to find:

˜⟨x2|0,0⟩s = ˜⟨x2|0,0⟩
(0)

s+r

1 + r
s

[
1− W̃ (s)

]
[
1− rW̃ (s)

s+r

]2 . (53)

We consider two scenarios next.

4.2.1. Mean refractory period is finite (⟨τ⟩<∞). As shown before, the late-time
dynamics can be obtained by considering the small-s limit of the Laplace trans-
formed mean squared displacement in equation (53). For small s, we can approximate

W̃ (s) = 1− s⟨τ⟩+ . . ., in which case, the dominant singularity of the MSD is s−2:

˜⟨x2|0,0⟩s =
r2 ˜⟨x2|0,0⟩

(0)

r

s2 (1 + r⟨τ⟩)
. (54)

Hence the diffusion is normal, with an effective diffusion coefficient

Deff = lim
t→∞

⟨x2 (t) |0,0⟩
2t

=
r2 ˜⟨x2|0,0⟩

(0)

r

2 + 2r⟨τ⟩
. (55)
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We see that refractory times suppress the effective diffusion, and when ⟨τ⟩ = 0 we recover
previous results.

4.2.2. Mean refractory period is infinite (⟨τ⟩ = ∞). If the mean refractory time

diverges due to power-law distributed refractory periods W (τ) ∼ 1/(τ 1+α) with W̃ (s) ∼
1− asα, for some constant a and α ∈ (0,1), we instead find the small-s behavior:

˜⟨x2|0,0⟩s =
r ˜⟨x2|0,0⟩

(0)

r

as1+α
. (56)

In this case, the MSD in real-time reads:

⟨x2 (t)⟩ ≃ r ˜⟨x2|0,0⟩
(0)

r

a
tα, (57)

with ≃ denoting equality at late times. Hence, the particle will exhibit anomalous
diffusion of the sub-diffusive type independently of its underlying dynamics, simply as
a consequence of the long refractory periods.

5. Conclusion and outlook

In this paper, we study stochastic resetting in coupled systems, with a particular focus
on position and velocity. A general result is derived for the propagator for an observable
variable under the indirect effect of resetting of a hidden variable. From this finding, we
derive a general recursive equation for the moments, from which one can in principle fully
characterize the marginalized process. We apply the proposed framework to transport
processes of inertial particles where the velocity undergoes resetting, and show that
generically the late-time dynamics shows normal diffusion even if the reset-free system
is anomalous. We attribute this outcome to the tempering effect stochastic resetting has
on velocity auto-correlation functions. We derive compact expressions for the effective
drift and diffusivity coefficients. When a temporal crossover between two dynamical
regimes exists in the underlying dynamics, this translates into a crossover as a function
of the resetting rate in the effective diffusivity, where different scaling behaviors are
observed. We test the validity of our predictions in the cases of underdamped Brownian
motion and for the random acceleration process, both showing excellent agreement with
simulated data. Extensions to the case where refractory periods are included after each
reset are also considered, in which case resetting-induced anomalous diffusion can be
observed.

The main results of this paper are based on two crucial assumptions. The first is the
homogeneity in the variable x that is not reset, and the second is the full renewal struc-
ture represented by equation (1). Extensions of the results presented here to account for
either spatial heterogeneity or, for example, non-renewal reset structures such as in [41]
would be very interesting, thus highlighting anomalous diffusion processes with velocity
resets in systems with quenched or annealed disorder. Generalizations to more complex
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types of resetting, such as proportional resetting [42] or non-Poissonian waiting times,
can also be considered.

Finally, it would also be interesting to investigate resetting in coupled systems from
a thermodynamic perspective. Recently, much effort has been put into understanding
the stochastic thermodynamics of resetting, with both entropy production and work
having been considered [12–14]. However, in the present model, the observable variable
is not the one undergoing resets. Hence, it would be interesting to investigate bounds
on the thermodynamic cost based on partial accessible information, a topic which has
gained considerable attention in the past decade [74–83].
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