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Abstract
The effect of refractory periods in partial resetting processes is studied. Under
Poissonian partial resets, a state variable jumps to a value closer to the origin
by a fixed fraction at constant rate, x→ ax. Following each reset, a stationary
refractory period of arbitrary duration takes place. We derive an exact closed-
form expression for the propagator in Fourier–Laplace space, which shows rich
dynamical features such as connections not only to other resetting schemes but
also to intermittent motion. For diffusive processes, we use the propagator to
derive exact expressions for time dependent moments of x at all orders. At late
times the system reaches a non-equilibrium steady state which takes the form
of a mixture distribution that splits the system into two subpopulations; tra-
jectories that at any given time in the stationary regime find themselves in the
freely evolving phase, and those that are in the refractory phase. In contrast to
conventional resetting, partial resets give rise to non-trivial steady states even
for the refractory subpopulation. Moments and cumulants associated with the
steady state density are studied, and we show that a universal optimum for the
kurtosis can be found as a function of mean refractory time, determined solely
by the strength of the resetting and the mean inter-reset time. The presented
results could be of relevance to growth-collapse processes with periods of
inactivity following a collapse.
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1. Introduction

Systems that exhibit substantial growth are often also susceptible to decay and collapse [1].
Unbounded growth is not physical in systems with finite resources, and complex systems that
do not possess mechanisms for mitigating exaggerated growth may become unstable and vul-
nerable to sudden decay. External stimuli, such as accidents or other extreme events, may
also cause such sudden disruption. Examples are observed in a wide range of complex sys-
tems, such as population numbers under disasters [2, 3], crashes on the stock market [4], and
stress release during earthquakes or other forms of material failure [5, 6]. Also in cell biology
we can find examples of growth-collapse phenomena, for example in a cell that grows and
suddenly divides into two or more daughter-cells, effectively forcing the size of the mother-
cell to collapse to some fractional value [7–9]. From the perspective of statistical physics,
stochastic resetting offers a powerful framework well-suited for the study of such recurrent
extreme events.

Stochastic resetting has emerged as a new branch of non-equilibrium statistical physics,
where intriguing and surprising phenomena are aplenty. Over the last decade, this field has
attracted the fascination of the physics community, in part due to the availability of steady
states that, while arbitrarily far from equilibrium, are exactly solvable and brings insights into
non-equilibrium phenomena. Since the work of Evans andMajumdar a little over a decade ago
[10, 11], many extensions and generalizations have been considered. A myriad of systems has
been exposed to the effects of conventional resetting, whereby an observable is instantaneously
reset to its initial value at Poissonian instances of time, such as Brownian motion in potentials
[12–14], resetting in underdamped systems [15–17], and in active matter models [18–21]. In
addition, a vast range of resetting schemes have been considered beyond the conventional
setup. This includes non-Poissonian inter-reset durations [22–26], and resetting in finite time
implemented by some physical resetting mechanism [20, 27–32]. The non-equilibrium nature
of resetting systems have also been elucidated by stochastic thermodynamics [33–40]. For a
review, see [41].

An extension of conventional resetting that is particularly well-suited for dealing with the
sudden collapse of complex systems is partial resetting. This framework is able to account for
the fact that sudden decay and collapse is often not complete but only partial. Here an observ-
able x(t) prepared initially in x(0) = 0, for example a particle’s position, is allowed to evolve
following an arbitrary stochastic equation of motion, before being reset at random times to
ax(t), with a resetting strength given by the scalar parameter a. Since the process is only reset
partially towards its initial state x= 0 for a ∈ (0,1), we consider only this range of values for
a, although in principle other values could be considered, making the process a hybrid diffu-
sion/jump process [40, 42–44]. Within the applied mathematics community, similar processes
have been studied under the guise of Markovian growth-collapse models, where typically a
deterministic growth is interrupted by instantaneous decays [45–47]. Other systems that share
some formal similarity to partial resetting processes can be found for example in the dynam-
ics of cells under division [48], and particles undergoing inelastic collisions with a vibrating
plate [49]. In the modern version of stochastic resetting, partial resets were first studied in the
context of advection-diffusion processes [50, 51]. Since then, several studies have surfaced,
investigating aspects such as time-dependent propagators for generalMarkovian systems, ther-
modynamics, mean first passage times, and methods for unbiased computation of the marginal
probability densities [40, 44, 52, 53].
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Figure 1. (a) In the exploration state E the system resets at rate r and enters the refract-
ory stateR. After a time drawn from a densityW(τ), a new exploration state is initiated.
(b) Sketch of typical evolution of the state variable x(t). Stochastic trajectories undergo
partial resetting with strength a= 1/2. At any given time in the stationary regime, a con-
stant fraction of trajectories in a large ensemble occupy the exploration and refractory
states. This is reflected in the steady state, which can be decomposed into two subpop-
ulations ρS(x), S = E ,R, corresponding to particles in the exploration and refractory
states respectively.

Here, we study partial resetting under the additional effect of refractory periods. Refractory
periods are phases where, following a reset, the state remains idle for a random duration τ
drawn from a distribution W(τ) [54, 55]. After this idle period, a new exploration phase is
initiated (see figure 1). This can be of interest for several reasons. First, one may easily imagine
that in natural systems that undergo a sudden collapse, there is a period of inactivity following
the collapse. Examples include populations whose growth may briefly be stifled by a collapse,
stock market collapse where trader skepticism prevents immediate growth, or in the cell cycle
where the DNA content does not immediately grow after mitosis. Second, the mixed effect of
partial resets and refractory times may give rise to intriguing steady state properties and be
of interest from a theoretical perspective. Indeed, for conventional resetting (corresponding
to a= 0) the presence of refractory periods has been shown to give rise to a steady state that
is a weighted mixture of the steady state in the absence of refractory periods and a Dirac
delta-function located at the resetting position [54, 56]. The mean refractory time ⟨τ⟩ then
defines a one-parameter family of steady states that interpolates between the refractory-free
steady state (at ⟨τ⟩= 0) and a Dirac delta function (as ⟨τ⟩ →∞). The appearance of a Dirac
delta in the steady state is a simple consequence of the fact that after every reset, the process
remains idle at the resetting position for some refractory time. However, in the partial resetting
scenario the resetting position is never the same, and more complex steady state properties are
to be expected. Furthermore, it is known that partial resetting gives rise to steady states that
transition from non-Gaussian shapes at strong resetting, to Gaussian at weak resetting [51].
The inclusion of both refractory times and partial resets will enable us to see whether these
transitions persist, and how the two effects act in conjunction.

This paper is organized as follows. Section 2 derives an exact expression for the propag-
ator in Fourier–Laplace space, and consider various limiting scenarios. Section 3 consider the
case of a diffusion process in detail, where explicit expressions for time-dependent moments
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are calculated. Section 4 studies the non-equilibrium steady state and its behavior under vari-
ous choices of refractory times and resetting strengths, before section 5 offer a concluding
discussion.

2. The propagator

We consider a process that alternates between an exploring phase and a refractory phase fol-
lowing a reset. In the refractory phase, no evolution takes place. We denote the times at which
the process switches from one phase to another ti, such that exploration periods take place in
t ∈ (t2n−2, t2n−1) and refractory periods in t ∈ (t2n−1, t2n). We denote the intervals

Tn = t2n−1 − t2n−2, (1)

τn = t2n− t2n−1, (2)

and denote their distributions by T ∼ ψ(T ) and τ ∼W(τ) respectively. While in the explora-
tion phase, the state evolves according to the underlying (reset-free) propagator p0(x, t|x0). At
the end of an exploration phase, the particle resets partially and transitions into a refractory
state, and remains at this location for a duration drawn fromW(τ) (see figure 1). We consider
exploration phases with exponential durations ψ(T ) = re−rT , and keepW(τ) arbitrary for the
moment.

To proceed analytically, we make use of the renewal structure present in most resetting
problems [41]. Here it is convenient to use a first renewal equation, which in this instance
takes the form [54]

pr (x, t|x0) = e−rtp0 (x, t|x0)

+ r
ˆ t

0
dt1e

−rt1

ˆ t−t1

0
dτW(τ)

ˆ
dyp0 (y, t1|x0)pr (x, t− t1 − τ |ay)

+ r
ˆ t

0
dt1e

−rt1

ˆ ∞

t−t1

dτW(τ)

ˆ
dyp0 (y, t1|x0)δ (x− ay) . (3)

Here the first term corresponds to trajectories where no resets take place up to time t, and
the system evolves according to the underlying propagator. The probability that no reset takes
place is simply e−rt. The second term takes into account trajectories that at time t are in the
exploration phase. The system evolves from the initial state x0 to a random position y in time
t1. It then resets y→ ay, and remains at this new position for a time τ . In the remaining time
t− t1 − τ the particle propagates to the final state x. The third term takes into account traject-
ories that at time t end in the refractory phase. After an evolution from the initial state x0 to
a random position y followed by subsequent partial reset y→ ay, the particle now remains in
the refractory phase at least until time t, i.e. τ ∈ (t− t1,∞). These trajectories can only con-
tribute to the propagator pr(x, t|x0) if x= ay, which is the reason for the Dirac delta function
in the above renewal equation. To proceed, we perform a Laplace transform, following [54],
and make use of the convolution theorem. This results in

p̃r (x,s|x0) = p̃0 (x,s+ r|x0)+ rW̃(s)
ˆ

dyp̃0 (y,s+ r|x0) p̃r (x,s|ay)

+ r
1− W̃(s)

as
p̃0 (x/a,s+ r|x0) . (4)
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A similar Laplace transform was performed in [54] for conventional resetting, and we refer
the reader to this reference for further details.

To obtain a closed relation for p̃r(x,s|x0) we need to deal with the remaining integral over
the intermediate position y. The expression is almost in the form of a convolution, however,
p̃r(x,s|ay) ̸= p̃r(x− ay,s|0) since partial resetting introduces a spatial heterogeneity that is not
present in the underlying system without resetting. This is a simple consequence of the fact
that the length of the resetting step, for fixed strength a, depends on the initial position of the
particle. However, these issues may be circumvented by iterating equation (4) multiple times,
which leads to

p̃r (x,s|x0) = PE (x,s|x0)+PR (x,s|x0) , (5)

where we introduced

PE (x,s|x0) = p̃0 (x,s+ r|x0)+ rW̃(s)
ˆ

dyp̃0 (y,s+ r|x0) p̃0 (x,s+ r|ay)

+
(
rW̃(s)

)2ˆ
dydy ′p̃0 (y,s+ r|x0) p̃0 (y ′,s+ r|ay) p̃0 (x,s+ r|ay ′)+ . . . (6)

which incorporates all the contributions from trajectories that end in the exploration phase,
and

PR (x,s|x0) = r
1− W̃(s)

as
p̃0 (x/a,s+ r|x0)+ r

1− W̃(s)
as

(
rW̃(s)

)ˆ
dyp̃0 (y,s+ r|x0) p̃0 (x/a,s+ r|ay)

+ r
1− W̃(s)

as

(
rW̃(s)

)2 ˆ
dydy ′p̃0 (y,s+ r|x0)p0

(
y ′,s+ r|ay

)
p̃0
(
x/a,s+ r|ay ′

)
+ . . .

(7)

which incorporates all the contributions from trajectories that end in the refractory phase.
Diagrammatically, and for the sake of easier readability, the propagator can be expressed dia-
grammatically as

where each solid line corresponds to a propagator of the underlying system with appropri-
ate initial conditions and R denotes refractory periods. Here, the first row corresponds to
PE(x,s|x0), and the second row of diagrams to PR(x,s|x0). Each complete refractory period
is accompanied by a factor of rW̃(s), and trajectories ending in a refractory period has one
additional factor of r(1− W̃(s))/s. For trajectories ending in a refractory phase, they arrive at
some random location at the time of entering this last phase, and remain there.

With equations (5)–(7), the propagator is expressed entirely in terms of the underlying
propagator, for which we are free to use spatial homogeneity to write p̃0(x,s|x0) = p̃0(x−

5



J. Phys. A: Math. Theor. 57 (2024) 485001 K S Olsen and H Löwen

x0,s|0). All integrals are then converted to convolutions, and we can perform a Fourier trans-
form and use the convolution theorem to obtain the solution

ˆ̃pr (k,s|x0) =
∞∑
n=0

[
rW̃(s)

]n
e−iankx0

n∏
j=0

ˆ̃p0
(
ajk,s+ r|0

)
+ r

1− W̃(s)
s

∞∑
n=1

[
rW̃(s)

]n−1
e−iankx0

n∏
j=1

ˆ̃p0
(
ajk,s+ r|0

)
. (8)

This is an exact result, valid for any distribution of refractory periods W(τ) and any under-
lying system with propagator p0(x, t|x0). This result extends previous studies, which can be
recovered by taking various limits. Some special cases worth highlighting are:

(i) Complete resetting a= 0: when resetting is complete, the propagators in the products in
equation (8) will due to normalization satisfy ˆ̃p0(ajk,s+ r|0) = (s+ r)−1 for j ⩾ 1. Only
the j= 0 terms contributes to the propagator ˆ̃pr(k,s|x0). Furthermore, since the system is
homogeneous, we set x0 = 0. We find

ˆ̃pr (k,s|0) = ˆ̃p0 (k,s+ r|0)
∞∑
n=0

[
rW̃(s)

]n
(s+ r)−n

+
1− W̃(s)

sW̃(s)

∞∑
j=1

[
rW̃(s)

]n
(s+ r)−n

(9)

=
(s+ r) ˆ̃p0 (k,s+ r|0)+ r

s

[
1− W̃(s)

]
s+ r− rW̃(s)

, (10)

which is exactly the solution obtained in [54, 56] for this particular scenario.
(ii) No refractory period W(τ) = δ(τ) : when the refractory periods have vanishing duration,

W̃(s) = 1. This immediately removes the last term in equation (8), and we have

ˆ̃pr (k,s|x0) =
∞∑
n=0

rne−iankx0
n∏

j=0

ˆ̃p0
(
ajk,s+ r|0

)
. (11)

This is the solution studied in [52] for partial resetting without refractory periods.
(iii) Weak resetting a= 1: in the weak resetting limit, the propagator will now still deviate sig-

nificantly from the underlying propagator due to the presence of refractory times. Indeed,
letting a= 1 in equation (8) we find

ˆ̃pr (k,s|x0) =
ˆ̃p0 (k,s+ r|x0)

1− rW̃(s) ˆ̃p0 (k,s+ r|0)

(
1+

r
s

[
1− W̃(s)

])
. (12)

In [17] this propagator was derived for systems that undergo stop-and-go motion using a
velocity resetting protocol. Since a= 1, the resetting does not alter the particle’s position,
but nonetheless the particle enters into a stationary refractory phase which last for a ran-
dom duration. Such intermittent stochastic motion has been studied in many scenarios,
with particular attention to active matter systems in recent years [57–63].
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3. Time-evolution of moments for diffusion processes

Before examining general properties of the steady states resulting from partial resets with
refractory times, we consider in detail the time dependence of moments when the reset-free
system is purely diffusive and x0 = 0. At early times when no resets have taken place, we
expect that the moments behave as in the purely diffusive case, with ⟨x2ℓ⟩ ∼ tℓ. At late times,
we expect a steady state value to be reached. However, the transient behavior connecting these
regimes can be rather complex, and depends on the choice of W(τ).

For diffusion processes, the underlying propagator takes the form

ˆ̃p0 (k,s|0) =
1

s+Dk2
. (13)

Using equation (8) we can write the full resetting propagator as

ˆ̃pr (k,s|x0) =
∞∑
n=0

[
rW̃(s)

]n
(s+ r)n+1

n∏
j=0

1

1+ Da2jk2
s+r

+ r
1− W̃(s)

s

∞∑
n=1

[
rW̃(s)

]n−1

(s+ r)n

n∏
j=1

1

1+ Da2jk2
s+r

. (14)

To proceed, we notice the appearance of the q-Pochhammer symbol

(x;y)n+1 =
n∏

j=0

(
1− xyj

)
, (15)

which leads to a propagator of the form

ˆ̃pr (k,s|x0) =
∞∑
n=0

[
rW̃(s)

]n
(s+ r)n+1

(
− Dk2

s+ r
;a2
)−1

n+1

+ r
1− W̃(s)

s

∞∑
n=1

[
rW̃(s)

]n−1

(s+ r)n

(
1+

Dk2

s+ r

)(
− Dk2

s+ r
;a2
)−1

n+1

. (16)

The q-Pochhammer symbol is a well-studied function and has a rich mathematical theory
with connections to number theory, modular forms and the partition of integers [64]. Series
representations, known as q-series, are well-established [65, 66], including

(x;y)−1
n+1 =

∞∑
ℓ=0

[
ℓ+ n
ℓ

]
y

xℓ, (17)

where the square bracket denotes the Gaussian binomial coefficients. Using this series repres-
entation, we can write the propagator as

ˆ̃pr (k,s|x0) =
1
s
+

∞∑
ℓ=1

(−1)ℓ
( ∞∑
n=0

[
ℓ+ n
ℓ

]
a2

[
rW̃(s)

]n
(s+ r)n+ℓ+1 d

ℓ

)
k2ℓ

+
∞∑
ℓ=1

(−1)ℓ
( ∞∑
n=1

[
ℓ+ n
ℓ

]
a2

a2ℓ
(
1− a2n

)
1− a2(ℓ+n)

r
1− W̃(s)

s

[
rW̃(s)

]n−1

(s+ r)n+ℓ
Dℓ

)
k2ℓ.

(18)

For details of the derivation, see appendix A. This can be compared with the characteristic
series

ˆ̃pr (k,s|x0) =
∞∑
ℓ=0

(−1)ℓ

(2ℓ)!
⟨̃x2ℓ⟩k2ℓ (19)
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to identify the (Laplace transformed) moments of order 2ℓ:

⟨̃x2ℓ⟩= (2ℓ)!
∞∑
n=0

[
ℓ+ n
ℓ

]
a2

[
rW̃(s)

]n
(s+ r)n+ℓ+1D

ℓ (20)

+(2ℓ)!
∞∑
n=1

[
ℓ+ n
ℓ

]
a2

a2ℓ
(
1− a2n

)
1− a2(ℓ+n)

r
1− W̃(s)

s

[
rW̃(s)

]n−1

(s+ r)n+ℓ
Dℓ, (21)

which holds for ℓ⩾ 1. To obtain the full time evolution of the moments in the general case,
we must perform an inverse Laplace transform of the above coefficients:

⟨x2ℓ⟩= (2ℓ)!
∞∑
n=0

[
ℓ+ n
ℓ

]
a2
L−1
t

( [
rW̃(s)

]n
(s+ r)n+ℓ+1

)
Dℓ

+(2ℓ)!
∞∑
n=1

[
ℓ+ n
ℓ

]
a2

a2ℓ
(
1− a2n

)
1− a2(ℓ+n)

rL−1
t

(
1− W̃(s)

s

[
rW̃(s)

]n−1

(s+ r)n+ℓ

)
Dℓ. (22)

This gives the exact moments and their time evolution for any W(τ), with an inverse Laplace
transform to be calculated in each case. In the limit r→ 0 only the first term of the first sum
survives, and we recover the diffusive moments ⟨x2ℓ⟩= (2Dt)ℓ(2ℓ− 1)!! as expected. Next we
consider several choices for W(τ).

(i) No refractory times: in the special case of no refractory times W̃(s) = 1 and we have

⟨x2ℓ⟩= (2ℓ)!
∞∑
n=0

[
ℓ+ n
ℓ

]
a2
L−1
t

(
rn

(s+ r)n+ℓ+1

)
Dℓ (23)

= (2ℓ)!
∞∑
n=0

[
ℓ+ n
ℓ

]
a2

(
D
r

)ℓ
(rt)n+ℓ

(n+ ℓ)!
e−rt. (24)

This gives the exact time-dependent moments, albeit in the form of an infinite sum. For
ℓ= 1, the sum for the second moment can be carried out explicitly, and we find

⟨x2⟩=
2D
(
1− e−(1−a2)rt

)
r(1− a2)

, (25)

which coincides with the particular case calculated in [51].
(ii) Sharp refractory times: for sharp refractory times with fixed duration τ 0 we have

W(τ) = δ(τ − τ0), and W̃(s) = exp(−sτ0). The inverse Laplace transforms needed in
equation (22) then can be inverted using numerical software, resulting in

L−1
t

( [
rW̃(s)

]n
(s+ r)n+ℓ+1

)
= θ (t− nτ0)

rn (t− nτ0)
l+ne−r(t−nτ0)

Γ(l+ n+ 1)
, (26)

L−1
t

(
1− W̃(s)

s

[
rW̃(s)

]n−1

(s+ r)n+ℓ

)
=−θ (t− nτ0)

r−l−1 [Γ(n+ ℓ)−Γ(n+ ℓ,r(t− nτ0))]
Γ[n+ ℓ]

+ θ (t− nτ0 + τ0)
r−l−1 [Γ(n+ ℓ)−Γ(n+ ℓ,r(t− nτ0 + τ0))]

Γ[n+ ℓ]
.

(27)

8
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Figure 2. Analytic solution for the mean squared displacement (a) and kurtosis (b) for a
diffusion process with sharp refractory durationsW(τ) = δ(τ − τ0) and partial resetting
with strength a= 1/4, obtained from equation (22) and equations (26) & (27). Other
parameters are set to D= 1,r= 1.

where θ(x) is the Heaviside theta-function and Γ(x,y) the incomplete gamma-function.
Using equation (22), we plot themean squared displacement ⟨x2⟩ and kurtosis ⟨x4⟩/[⟨x2⟩]2
in figure 2 for various values of the refractory time τ 0. The peaks observed in the mean
squared displacement correspond approximately to times when the particle is at the end of
an exploration phase and is about to reset, i.e. at times tn = (n− 1)[τ0 + 1/r] + 1/rwhere
(n− 1)[τ0 + 1/r] is the mean time of n− 1 exploration and refractory phases, and the
additional waiting time 1/r takes the particle to its position just before the nth reset. The
kurtosis and displays the same non-monotonic behavior, although the peaks are somewhat
shifted when compared to the case of the mean squared displacement. At early times, the
kurtosis takes the Gaussian value 3, since no resetting has affected the diffusive dynamics
at this point. We see that the steady state value of the kurtosis reached at late times is
always greater than 3, indicating that the steady states are leptokurtic.

(iii) Exponential refractory times: finally, we consider the case of exponentially distrib-
uted refractory times, with W(τ) = λe−λτ . In this case, the inverse Laplace transforms
in equation (22) are cumbersome, and we resort to evaluating the theoretical result in
equation (22) numerically. The results for the mean squared displacement and kurtosis
are shown in figure 3. We see that, in contrast to the case of deterministic refractory peri-
ods, case (ii), the cumulants in this case show no signs of oscillatory behavior. This is
attributed to the fact that a large variability in the refractory durations erases the approx-
imate synchrony of refractory periods experienced by independent stochastic realizations
in the deterministic case (ii).

In all three cases above, (i)–(iii), the cumulants approach a stationary value corresponding
to the non-equilibrium steady state obtained at a given value of a. The next section studies
these non-equilibrium steady states in more detail.

9
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Figure 3. Analytic solution for the mean squared displacement (a) and kurtosis (b) for a
diffusion process with exponential refractory durationsW(τ) = λe−λτ and partial reset-
ting with strength a= 1/4, numerically evaluated from equation (22). Other parameters
are set to D= 1,r= 1.

4. Non-equilibrium steady states

Having studied dynamical properties of partial resets with refractory times for the particular
case of diffusion, we next turn to properties of non-equilibrium steady states for general sys-
tems. These steady states can be extracted from equation (8) through application of the final
value theorem

p̂∗r (x)≡ lim
s→0

sˆ̃pr (k,s|x0) . (28)

We first rewrite the expression for the propagator as

ˆ̃pr (k,s|x0) =
∞∑
n=0

[
rW̃(s)
s+ r

]n
1

s+ r
e−i ankx0

n∏
j=0

(s+ r) ˆ̃p0
(
ajk,s+ r|0

)
+ r

1− W̃(s)
s

∞∑
n=1

[
rW̃(s)
s+ r

]n−1
1

s+ r
e−i ankx0

n∏
j=1

(s+ r) ˆ̃p0
(
ajk,s+ r|0

)
. (29)

This makes the factors in the products well-behaved, with (s+ r)ˆ̃p0(ajk,s+ r|0) simply
approaching unity for large values of j. To proceed, we want to use the final value the-
orem, equation (28), and extract the coefficient in front of the s−1 pole at small s-values in
these expressions. However, taking a small-s limit may not commute with the infinite sums
in equation (29). For technical details of performing this limit, see appendix B. The non-
equilibrium steady state is found to take the form

p̂∗r (k) =
1

1+ r⟨τ⟩

∞∏
j=0

rˆ̃p0
(
ajk,r|0

)
+

r⟨τ⟩
1+ r⟨τ⟩

∞∏
j=1

rˆ̃p0
(
ajk,r|0

)
. (30)

When there are no refractory periods (⟨τ⟩= 0), we recover the results of [51]. When the reset-
ting is very strong (a→ 0) we recover the results of conventional resetting with refractory
times [54, 56].

10
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The steady state in equation (30) has a natural interpretation as a statistical co-existence of
two populations; particles in the exploration phase and particles in the refractory phase. The
particles in the exploration phase contribute to the steady state

p̂E (k) =
∞∏
j=0

rˆ̃p0
(
ajk,r|0

)
, (31)

while the particles in the refractory phase contribute

p̂R (k) =
∞∏
j=1

rˆ̃p0
(
ajk,r|0

)
. (32)

In the steady state, the probability of finding a particle in the exploration phase is given by
the fraction of time spent in this phase, and reads πE = (1+ r⟨τ⟩)−1, while the probability of
finding a particle in the refractory phase is πR = r⟨τ⟩(1+ r⟨τ⟩)−1. In terms of these quantities,
the steady state can be written

p̂∗r (k) = πE p̂E (k)+πRp̂R (k) . (33)

Since p̂E,R(0) = 1, normalization of p̂∗r (k) follows immediately from πE +πR = 1. As ⟨τ⟩
changes from 0 to∞, the steady state transitions from pE(x) to pR(x). Figure 4 shows several
steady states for a diffusion process, varying both the mean refractory time and the resetting
strength. The co-existence of the exploration and refractory subpopulations can clearly be
seen in the steady state; a sharper peak corresponding to particles stuck in refractory periods
(dashed line), and a wider tail corresponding to exploring particles (dotted line). We see that
as resetting becomes weaker, the non-equilibrium steady state seems to approach a Gaussian
for any value of the mean refractory time. As the mean refractory time is increased, more
weight is given to the population in the refractory phase pR(x). In the statistics literature,
models with multiple components such as in equation (33) as referred to as mixture models
[67], and has many applications in various complex systems. For further quantitative insight
into the non-equilibrium steady state in equation (33) we analyze the two contributions pS(x),
S = E ,R, and study the associated moments and cumulants. We show that universal results
can be derived for a wide range of underlying processes.

4.1. Moments and cumulants

While the solution presented above is exact and can be studied numerically or semi-analytically
by truncating the infinite products at finite values and inverting the Fourier transforms, one can
gain further insights into the non-equilibrium steady state by considering the moments and
cumulants.

Moments. First, we note that due to the splitting of the non-equilibrium steady state into two
subpopulations in equation (33), the moments are similarly given as

⟨xm⟩∗ = πE⟨xm⟩E +πR⟨xm⟩R, (34)

where ⟨xm⟩S are the moments associated with the exploration and refractory phases S = E ,R.
Using similar methods to those of section 3, we can also find explicit expressions for the steady
state moments. Consider again a diffusion process, where

ˆ̃p(k,s) =
1

s+Dk2
. (35)

11
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Figure 4. Steady states for a Brownian particle for various choices of resetting strength a
and refractory durations ⟨τ⟩. The solid line shows the full steady state, while the dotted
and dashed line show the exploration and refractory population respectively. At large
⟨τ⟩ the trajectories trapped in the refractory long phases dominate the steady state. As
the resetting becomes weaker a→ 1, a Gaussian is approached for any ⟨τ⟩. Parameters
chosen are D= r= 1. Steady states are obtained by truncating the infinite product in
the analytical expressions at finite order and inverting the Fourier transform. We should
note that this may require a small re-normalization, which has not been included in the
above curves. This only shifts the curves and will not change any qualitative features.

This implies that the two subpopulations of the steady state can again be written in terms of
the q-Pochhammer symbol (a;q)n as in section 3. For the exploration population, we have

p̂E (k) =
∞∏
j=0

1

1+ D
r a

2j kβ
=

(
−D
r
k2;a2

)−1

∞
. (36)

By using the series expansion for the q-Pochhammer symbol, equation (17), we can write the
series as

p̂E (k) =
∞∑
n=0

(−1)n

(a2;a2)n

Dn

rn
k2n ≡

∞∑
n=0

CE (n)k
2n. (37)

For the refractory population, we note that since p̂R(k) = (1+ D
r k

2)p̂E(k), we have

p̂R (k) = 1+
∞∑
n=1

{
CE (n)+

D
r
CE (n− 1)

}
k2n ≡ 1+

∞∑
n=1

CR (n)k2n. (38)

12
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With this series representation we can easily access moments for the subpopulations as well
as for the full non-equilibrium steady state through equation (34). This can be compared with
the series representation

p̂S (k) =
∞∑
m=0

(−i)m

m!
⟨xm⟩S km (39)

to find the moments

⟨x2n⟩S = (−1)n (2n)!CS (n,2) =

{
(2n)!

(a2;a2)n

Dn

rn , if S = E ,
(2n)!

(a2;a2)n

Dn

rn a
2n , if S =R,

(40)

which is valid for all orders. The full non-equilibrium steady state moments are then easily
obtained from equation (34).

Cumulants.While the above approach has the strength that it allows a closed-form expression
for moments of all orders, it may be hard to generalize beyond diffusion or drift-diffusion
processes. Furthermore, cumulants will not satisfy the same simple splitting rule equation (34)
as the moments do, so the cumulants deserve additional attention. To better understand the
cumulants, we consider their generating functions. Define the cumulant generating function
of either of the two subpopulations S = E ,R as

GS (k) = log p̂S (k) , (41)

and let

C0 (k) = log
(
rˆ̃p0 (k,r)

)
(42)

denote the cumulant generating function for the resetting problem with a= ⟨τ⟩= 0. From
equations (31) and (32) we then immediately have

GS (k) =
∞∑

j=j0(S)

C0
(
ajk
)
, (43)

where the starting index of the sum depends on the population label as j0(E) = 0 and j0(R) = 1.
The cumulants are then obtained by the application of ∂m

∂(−i k)m and the subsequent limit k→ 0
of the corresponding generating function. Taking derivatives and using the chain rule, we have

κ(S)
m =

{
κ
(0)
m

1
1−am , if S = E ,

κ
(0)
m

am

1−am , if S =R,
(44)

where κ(0)m is the mth cumulant for the a= ⟨τ⟩= 0 process. This immediately implies the
relation

κ
(R)
m

κ
(E)
m

= am, (45)

which holds independently of the underlying process and is a simple consequence of the fact
that theR-population can be thought of as the E-population with rescaled coordinates x→ ax.
Since a⩽ 1, this also shows that κ(R)

m ⩽ κ
(E)
m at all orders m.

13
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For the full non-equilibrium steady state, the cumulant generating functionG(k) = log p̂∗r (k)
can also be obtained. From the general form of the non-equilibrium steady state, given in
equation (30), we have

eG(k) =

[
eC0(k) + r⟨τ⟩
1+ r⟨τ⟩

]
e
∑∞

j=1 C0(ajk). (46)

We proceed to taking a logarithm and rearranging, which results in

G (k) = log

[
eC0(k) + r⟨τ⟩
1+ r⟨τ⟩

]
+GR (k)= log

[
eC0(k) + r⟨τ⟩
1+ r⟨τ⟩

]
+

∞∑
j=1

C0
(
ajk
)
. (47)

We observe that the cumulant generating function in this way is entirely expressed in terms
of the cumulant generating function C0(k) for the same resetting problem with a= 0 and no
refractory periods. When calculating the cumulants from this expression by differentiation,
this implies that the dependence on the mean refractory time and resetting strength is made
explicit. For simplicity, we consider symmetric processes where ∂2m+1

k C0(k)|k=0 = 0. The first
two non-zero cumulants are then given by

σ2 (x) = κ2 = σ2
0

(
1

1+ r⟨τ⟩
+

a2

1− a2

)
, (48)

κ4 (x) = σ4
0

3r⟨τ⟩
[1+ r⟨τ⟩]2

+κ
(0)
4

(
1

1+ r⟨τ⟩
+

a4

1− a4

)
, (49)

where σ0 and κ(0)4 are the standard deviation and fourth cumulant of the problem without
refractory periods and with a= 0. We see that as the mean refractory duration grows, the vari-
ance of the steady state decreases. This is because particles on average spend a larger fraction
of time trapped in a refractory phase, and has less time to freely explore and widen the steady
state.

The kurtosis can be calculated from the fourth cumulant as

K(a,⟨τ⟩) = κ4 (x)
σ4 (x)

+ 3. (50)

This measures non-normality in the steady state, indicated by deviations from K= 3. From
the above, we see that

lim
a→1

K(a,⟨τ⟩) = 3+ lim
a→1

κ
(0)
4 (x)

σ4
0 (x)

(
1− a2

)2
1− a4

= 3, (51)

indicating that in the weak resetting limit the steady state approaches a Gaussian for any stat-
istics of refractory times. This transition was first discovered in [51] for ⟨τ⟩= 0 in the case of
diffusion with or without a drift.

Furthermore, the kurtosis is non-monotonic as a function of mean refractory time for 0<
a< 1. Using the above, one can readily verify that

∂⟨τ⟩K(a,⟨τ⟩)∼ 1− a2r⟨τ⟩
(a2r⟨τ⟩+ 1)3

, (52)

where ∼ indicates a proportionality with factors that do not alter the stationary points of the
slope. This attains a maximum at

⟨τ⟩∗ =
1
ra2

. (53)
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Hence, for fixed resetting strength, the kurtosis takes its maximum value for a specific choice of
mean refractory time. We emphasize that this optimum is universal, in the sense that it holds
without specifying the underlying system except symmetry and homogeneity. We also note
that this effect is only seen for partial resetting, since ⟨τ⟩∗ diverges for conventional resetting
a= 0.

5. Discussion

The effect of refractory periods on partial stochastic resetting has been studied analytically.
The Fourier–Laplace transform of the exact time-dependent propagator is obtained using the
first renewal equation. Our analysis is general, without assumption regarding the reset-free
system.

For diffusive systems, we derived exact expressions for spatial moments of any order. We
considered the variance and kurtosis as special cases, where we found that when refractory
times are deterministic (i.e. Dirac-delta distributed) the steady state is approached in an oscil-
latory manner, corresponding to synchronous refractory periods among multiple stochastic
realizations of the process. This effect is washed out by randomness when exponentially dis-
tributed refractory times are considered.

From the propagator, the steady state was extracted, and we characterize its behavior as a
function of refractory duration and resetting strength. The steady state naturally splits into two
subpopulations; in the stationary regime, a fraction of particles will reside in the exploration
phase, while the remaining particles reside in the refractory phase. The cumulant generating
function for the steady state was derived, and expressed in terms of the associated complete (i.e.
a= 0) resetting problemwithout refractory times, making the dependence on resetting strength
and refractory times explicit. We show that in the limit of weak resetting, the steady state
transition to a Gaussian for any choice of refractory times. We also showed that for symmetric
processes there exists a universal value of the mean refractory time that maximizes the kurtosis
of the steady state, that is determined only by the resetting rate and resetting strength, and is
independent of the particular system under study.

Recently, it was shown that when designing stationary states with a desired shape, one
can use resetting to speed up the relaxation process, providing an example of a swift equi-
libration protocol [68, 69]. In particular, when constructing states of the Boltzmann form
∼exp(−βV(x)) e.g. by optical tweezers methods, intermittent resets during relaxation facilit-
ate a rapid equilibration to the target stationary distribution if a resetting scheme can be iden-
tified whose steady state matches the desired Boltzmann state. So far, this idea has only been
applied to complete (a= 0) resetting without refractory times [68]. The simultaneous presence
of both partial resetting and refractory times gives rise to a large family of steady states which
could be useful for such rapid relaxation protocols in the future.

There are many potential outlooks related to partial resetting. In particular, it would be
interesting to explore the relaxation towards the steady state in order to see if partial resetting
shares some of the dynamical anomalies that are observed for conventional resetting [41]. A
promising application of partial resetting could be in processes where motion is intermittently
paused, such as in stop-and-go motion in active systems, or for passive particles that undergoes
capture/release with a nearby substrate or environment. This was recently explored by applying
complete resetting (i.e. a= 0) to the velocity of a particle in [17]. In the case of partial resets,
the parameter a represents a coefficient of restitution, and through varying it alongside the
rate of resets one would expect a wide range of shape transitions in the stationary velocity
distributions.
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Finally, partial resetting under non-Poissonian inter-reset times would also be interesting
to consider in more detail in the future, to see whether the general properties discussed here
can be extended to this more complex case.
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Appendix A. Characteristic series for the propagator

To derive equation (18), we proceed by studying the two contributions to the propagator,
PS(x,s|x0), S = E ,R, independently. Using the series expansion of the q-Pochhammer sym-
bol, equation (17), one can easily show by rearranging the sum that

PE (k,s|x0) =
∞∑
ℓ=0

(−1)ℓ
( ∞∑
n=0

[
ℓ+ n
ℓ

]
a2

[
rW̃(s)

]n
(s+ r)n+ℓ+1 d

ℓ

)
k2ℓ. (A1)

The second term PR(k,s|x0) requires a bit more attention. We again start by using the series
in equation (17), which leads to

PR (k,s|x0) = r
1− W̃(s)

s

∞∑
n=1

∞∑
ℓ=0

(−1)ℓ
[
ℓ+ n
ℓ

]
a2

[
rW̃(s)

]n−1

(s+ r)n+ℓ

(
1+

Dk2

s+ r

)
Dℓk2ℓ (A2)

= r
1− W̃(s)

s

∞∑
n=1

∞∑
ℓ=0

(−1)ℓ
[
ℓ+ n
ℓ

]
a2

[
rW̃(s)

]n−1

(s+ r)n+ℓ
Dℓk2ℓ

+ r
1− W̃(s)

s

∞∑
n=1

∞∑
ℓ=0

(−1)ℓ
[
ℓ+ n
ℓ

]
a2

[
rW̃(s)

]n−1

(s+ r)n+ℓ+1D
ℓ+1k2(ℓ+1). (A3)

Defining m= ℓ+ 1 and rearranging gives

PR (k,s|x0) =
∞∑
ℓ=0

(−1)ℓ
( ∞∑
n=1

[
ℓ+ n
ℓ

]
a2
r
1− W̃(s)

s

[
rW̃(s)

]n−1

(s+ r)n+ℓ
Dℓ

)
k2ℓ (A4)

−
∞∑
m=1

(−1)m
( ∞∑
n=1

[
m− 1+ n
m− 1

]
a2
r
1− W̃(s)

s

[
rW̃(s)

]n−1

(s+ r)n+m
Dm

)
k2m. (A5)

Writing out the ℓ= 0 term and using the identity[
ℓ+ n
ℓ

]
a2
−
[
ℓ− 1+ n
ℓ− 1

]
a2
=

[
ℓ+ n
ℓ

]
a2

a2ℓ
(
1− a2n

)
1− a2(ℓ+n)

(A6)

16



J. Phys. A: Math. Theor. 57 (2024) 485001 K S Olsen and H Löwen

allows us to combine the two sums, resulting in

PR (k,s|x0) =
1
s
− 1

r+ s− rW̃(s)

+
∞∑
ℓ=1

(−1)ℓ
( ∞∑
n=1

[
ℓ+ n
ℓ

]
a2

a2ℓ
(
1− a2n

)
1− a2(ℓ+n)

r
1− W̃(s)

s

[
rW̃(s)

]n−1

(s+ r)n+ℓ
Dℓ

)
k2ℓ.

(A7)

Combining with equation (A1) results in the characteristic series equation (18) as desired.

Appendix B. Derivation of the steady state

To derive the steady state, equation (30), we start with the propagator in the form

ˆ̃pr (k,s|x0) = PE (k,s|x0)+PR (k,s|x0)

=
∞∑
n=0

[
rW̃(s)
s+ r

]n
1

s+ r
e−i ankx0

n∏
j=0

(s+ r) ˆ̃p0
(
ajk,s+ r|0

)
+ r

1− W̃(s)
s

∞∑
n=1

[
rW̃(s)
s+ r

]n−1
1

s+ r
e−i ankx0

n∏
j=1

(s+ r) ˆ̃p0
(
ajk,s+ r|0

)
. (B1)

For simplicity, we consider x0 = 0. We first consider the contribution from the first term
PE(k,s|0). We want to perform the limit

lim
s→0

sPE (k,s|0) = lim
s→0

s
∞∑
n=0

[
rW̃(s)
s+ r

]n
1

s+ r

n∏
j=0

(s+ r) ˆ̃p0
(
ajk,s+ r|0

)
. (B2)

To proceed, we note that the only way in which poles in s can appear is due to the infinite sum,
as all other terms approach constants as s→ 0. We can write

lim
s→0

sPE (k,s|0) = lim
s→0

s
∞∑
n=0

[
rW̃(s)
s+ r

]n
1
r

n∏
j=0

rˆ̃p0
(
ajk,r|0

)
. (B3)

Next we observe that the product
∏n

j=0 rˆ̃p0(a
jk,r|0) converges to a constant as n→∞ due to

the fact that a< 1. This is because rˆ̃p0(ajk,r|0)→ 1 for large values of j. Based on this, we
assume next that for some large but finite cut-off value n∗ we can decompose the sum as

lim
s→0

sPE (k,s|0)≈ lim
s→0

s
n∗∑
n=0

[
rW̃(s)
s+ r

]n
1
r

n∏
j=0

rˆ̃p0
(
ajk,r|0

)
+ lim

s→0
s

∞∑
n=n∗

[
rW̃(s)
s+ r

]n
1
r

∞∏
j=0

rˆ̃p0
(
ajk,r|0

)
, (B4)

wherewe in the second sum replaced the finite product with an infinite one. This approximation
can be made arbitrarily accurate by choosing a sufficiently large value of n∗, and in the limit
n∗ →∞ the expression is exact. Next, observe that the finite sum in the first term is simply
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a polynomial q0 + q1s+ . . .+ qn∗s
n∗ of finite order, since rW̃(s)

s+r ≈ 1− (1+ r⟨τ⟩)s/r+ . . . at
small s. Upon multiplication with s and letting s→ 0 this term vanishes. Hence

lim
s→0

sPE (k,s|0)≈ lim
s→0

s
∞∑

n=n∗

[
rW̃(s)
s+ r

]n
1
r

∞∏
j=0

rˆ̃p0
(
ajk,r|0

)
. (B5)

Performing the geometric series and using the expansion W̃(s) = 1− s⟨τ⟩+ . . . we arrive at

lim
s→0

sPE (k,s|0)≈ lim
s→0

(
r

1+ r⟨τ⟩
+

s
1+ r⟨τ⟩

− n∗s+O
(
s2
)) 1

r

∞∏
j=0

rˆ̃p0
(
ajk,r|0

)
. (B6)

Taking the limit s→ 0 faster than the limit n∗ →∞ we find the steady state value

lim
s→0

sPE (k,s|0) =
1

1+ r⟨τ⟩

∞∏
j=0

rˆ̃p0
(
ajk,r|0

)
. (B7)

We note that here we used the expansion W̃(s) = 1− s⟨τ⟩+ . . ., which assumes finite mean
refractory times. The case of infinite ⟨τ⟩ is treated separately in appendix C.

Proceeding similarly with the second term, we find

lim
s→0

sPR (k,s|0) = r⟨τ⟩
1+ r⟨τ⟩

∞∏
j=1

rˆ̃p0
(
ajk,r|0

)
. (B8)

Combining these results, one arrives at the steady state in equation (30).

Appendix C. The case of infinite mean refractory time

In deriving the non-equilibrium steady state in section 4, we expanded W̃(s) to reveal the
dependence on the mean refractory time. When the mean refractory time diverges, the steady
state must be examined more carefully. Indeed, consider the case of a fixed refractory time
W(τ) = δ(τ − τ0). The non-equilibrium steady state in equation (30) is then reached for times
t≫ τ0, since at least one (and in principle infinitely many) resetting events must take place
for the stationary regime to be reached. However, since in the τ0 →∞ limit the system is
trapped indefinitely already in its first refractory period, the non-equilibrium steady state
in equation (30) is never reached. Considering this limit explicitly, we start with the full
propagator

ˆ̃pr (k,s|x0) =
∞∑
n=0

[rexp(−sτ0)]n e−iankx0
n∏

j=0

ˆ̃p0
(
ajk,s+ r|0

)
+ r

1− exp(−sτ0)
s

∞∑
n=1

[rexp(−sτ0)]n−1 e−iankx0
n∏

j=1

ˆ̃p0
(
ajk,s+ r|0

)
. (C1)

When τ0 →∞ only the first terms of the sums contribute, resulting in

ˆ̃pr (k,s|x0) = e−ikx0 ˆ̃p0 (k,s+ r|0)+ r
s
e−iakx0 ˆ̃p0 (ak,s+ r|0) . (C2)

18



J. Phys. A: Math. Theor. 57 (2024) 485001 K S Olsen and H Löwen

By the final value theorem, equation (28), the steady state becomes

p̂∗r (k|x0) = re−iakx0 ˆ̃p0 (ak,r|0) . (C3)

Inverting the Fourier transform, we arrive at

p∗r (x|x0) =
ˆ ∞

0
dtψ (t)

ρ0 (x/a, t|x0)
a

, (C4)

with ψ(t) = re−rt. This steady state has a rather simple interpretation; the probability density
at the time just before the first reset is simply

´∞
0 dtψ(t)ρ0(x, t|x0), after which a reset x→ ax

takes place. The process is then stuck at this location since the refractory time is infinite. By
basic transformation rules of probability densities, this first resetting position of the particle
has a density that is given exactly by equation (C4).

It is worth emphasizing that this steady state still depends on the initial position x0, in
contrast to the case of conventional resetting. Indeed, taking the a→ 0 limit, we see that
ρ0(x/a, t|x0)/a vanishes for large values of its argument, while it diverges at x= 0. Hence,

lim
a→0

p∗r (x|x0) = δ (x) , (C5)

which is independent of x0 as found in [54].
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