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ABSTRACT
We are used to measuring temperature with a thermometer, and we know from everyday life that different types of thermometers measure the
same temperature. This experience can be based on equilibrium thermodynamics, which explains the equivalence of different possibilities to
define temperature. In contrast, for systems out of equilibrium such as active matter, measurements performed with different thermometers
can generally lead to different temperature values. In the present work, we systematically compare different possibilities to define temperature
for active systems. Based on simulations and theory for inertial active Brownian particles, we find that different temperatures generally lead
to different temperature values, as expected. Remarkably, however, we find that different temperatures not only lead to the same values near
equilibrium (low Péclet number or high particle mass) but also even far from equilibrium, several different temperatures approximately
coincide. In particular, we find that the kinetic temperature, the configurational temperature, and temperatures based on higher moments
of the velocity distribution constitute a class of temperatures that all assume very similar values over a wide parameter range. Notably, the
effective temperature and temperatures exploiting the virial theorem, the Stokes–Einstein relation, or a harmonic confinement form a second
class of temperatures whose values approximately coincide with each other but which strongly differ from those of the first class. Finally,
we identify advantages and disadvantages of the different possibilities to define temperature and discuss their relevance for measuring the
temperature of active systems.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1063/5.0234370

INTRODUCTION

“Temperature is a physical quantity that expresses quantita-
tively the attribute of hotness or coldness. Temperature is measured
with a thermometer.”1 This is the definition of temperature reported
in the leading encyclopedia of our times.2 Clearly, this notion of
temperature is rather imprecise. Indeed, our sensation of hotness
and coldness not only depends on temperature but also on the
heat conductivity of the material we are touching. As an exam-
ple, this can be experienced by touching a cold piece of wood and
recognizing that it feels hotter than a piece of metal at the same
temperature.3

There are many different ways to define temperature more
precisely, and before we are taught thermodynamics, it may come
as a surprise that in everyday life, different types of thermometers

all essentially lead to the same result across a broad variety of
environmental conditions. In particular, we may wonder why the
reading of a liquid thermometer measuring the extension of a liquid
agrees with the reading of an infrared thermometer that measures
thermal radiation and even with that of a vapor-pressure ther-
mometer that measures temperature through the vapor pressure
of a liquid (exploiting the Clausius–Clapeyron equation). When
learning statistical mechanics, we are in a position to understand
that the universality of temperature and the link between different
phenomena that are exploited by different types of thermome-
ters exclusively hold true in thermodynamic equilibrium. In fact,
the thermodynamic temperature can be linked to different observ-
ables in equilibrium systems.4,5 This leads to different equivalent
possibilities to define temperature, which exploit the equipartition
theorem,6,7 the virial theorem,8 or fluctuation–dissipation relations
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for example.9–12 Alternatively, tracer particles can be used as a
thermometer such that their properties can be linked to the thermo-
dynamic temperature of the system in which the tracer particles are
immersed.13

In principle, these and other definitions of temperature can
all be generalized to non-equilibrium systems. In particular, classi-
cal irreversible thermodynamics grounds on the local-equilibrium
hypothesis assuming that thermodynamic concepts such as tem-
perature may still be applied locally in non-equilibrium states.14

However, when we are no longer near equilibrium and the local
equilibrium hypothesis is invalid, the reading of a thermome-
ter may (and typically will) depend on the details of the sys-
tem under consideration (and may even be time-dependent).15,16

Such a situation is generally expected for systems where the relax-
ation times of certain degrees of freedom are long or if large
persistent fluxes are present in the system, in particular also for
the large class of active matter systems containing self-propelled
particles.3,5,16–18

For such systems, we may wonder if it is sensible to define and
speak of temperature at all. First, when touching a piece of glass or
when putting our finger into a non-equilibrium liquid containing
swimming bacteria, there is of course still a perception of hotness
or coldness, and accordingly, it is tempting to introduce a measure
to quantify our experience. Second, it may be instructive to explore
when and by how much the different possibilities to define tempera-
ture, which we may use to quantify our experience, may deviate from
each other. In particular, we may wonder if there are subsets in para-
meter space for which the reading of different thermometers would
coincide. One might expect that different temperatures in active sys-
tems lead to strongly different temperature values for a system far
from equilibrium, which can be quantified by measuring the total
entropy production for example.17,19–21

In the present work, we comparatively explore different possi-
bilities to define temperature for inertial active Brownian particles
such as used in Refs. 16 and 22–33. As expected, we find that
different temperatures lead to results that depend on the details
of the considered non-equilibrium system, and in general, that all
obtained temperature values deviate from each other. However, per-
haps surprisingly, we identify parameter regimes where different
temperatures provide consistent results even far from equilibrium.
This applies in particular to regimes in which the active particles
are heavy or in which their rotational diffusion is fast, and it has
been previously found that within these regimes, an active system
behaves as an effective equilibrium system.23,34,35 Indeed, we find
that within this regime, also the considered temperatures lead to
similar temperature values independently of the values of all other
dimensionless parameters that control the dynamics of the active
particles. Interestingly, we find that the different temperatures that
we have compared can be sorted in two classes: the first one shows a
strong mass dependence (and scales linearly with the mass in a wide
parameter regime) and the second one is almost mass independent.
We show that these two classes can approximately be matched by
rescaling with the particle mass. This finding has important conse-
quences for the calculation of temperature in active systems, as we
shall see.

This article is organized as follows: first, we introduce the active
particle model and the different possibilities to define temperature,
and we summarize known analytical results. Second, we present

new numerical results based on Brownian dynamics simulations of
inertial active Brownian particles. Third, we discuss the advantages
and disadvantages of the presented temperatures, and finally, we
conclude our work.

MODEL

In this work, we consider inertial active particles modeled by
using the active Brownian particle (ABP) model36–40 in two spatial
dimensions. The ABP model is a “dry” model, i.e., self-propulsion
is modeled effectively and the solvent solely acts as a thermal bath
that leads to fluctuations in the equations of motion.36 Within
the ABP model, an active particle is represented by a (slightly
soft) sphere of diameter σ with mass m and moment of inertia
I = mσ2

/10 (corresponding to a rigid sphere). The particles fea-
ture an effective self-propulsion force FSP,i = γtv0pi(t), where v0, pi
denote the (terminal) self-propulsion speed and the self-propulsion
direction pi of the ith active particle (i = 1, 2, . . . , N), respectively.
Its position ri evolves as dri/dt = vi, and its velocity vi evolves
according to

m
dvi

dt
= −γtvi + γtv0pi −

N

∑
j=1
j≠i

∇ri u(rij) + Fext,i +
√

2kBTbγtξi. (1)

Here, Tb represents the bath temperature, ξi denotes Gaussian
white noise with zero mean and unit variance, and γt denotes the
translational drag coefficient. The particles may interact through a
two-body interaction potential u(rij), rij = ∣ri − r j ∣ and may be sub-
ject to an additional external force Fext,i = −∇ri Uext(ri) originating
from an external potential Uext. The self-propulsion direction pi(t)
can be expressed in terms of the orientation angle ϕi(t) as pi(t)
= (cos ϕi(t), sin ϕi(t)).

24,25,37,38,41–43 It evolves in time according to
dϕi/dt = ωi, where the angular velocity ωi evolves as

I
dωi

dt
= −γrωi +

√
2kBTbγrηi. (2)

Here, γr denotes the rotational drag coefficient and ηi denotes
Gaussian white noise with zero mean and unit variance. In the
overdamped limit, it yields

dϕi

dt
=

√
2
τp

ηi, (3)

where τp = 1/Dr denotes the persistence time and Dr = kBTb/γr
is the rotational diffusion coefficient. Here, kB is the Boltzmann
constant.

POSSIBILITIES TO DEFINE TEMPERATURE

Let us first discuss the different possibilities under consider-
ation to define temperature. In general, we can distinguish three
different approaches to define temperature: First, one can define
temperature based on the fluctuations of the particle velocity, which
is a very common approach in the field of granular particles.44–47

Second, it is possible to define temperature based on fluctuations
in particle positions.32 The third approach takes inspiration from
glassy systems and exploits fluctuation–dissipation relations.48–50
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TABLE I. Temperature definitions. Summary of different possibilities to define temperature for a system of (inertial) ABPs in d spatial dimensions.

Symbol Name Definition References Comments

Velocity-based definitions

Tkin Kinetic 1
2Nd∑

N
i=1 m⟨(vi − ⟨v⟩)2

⟩ 16, 24, 25, and 51–56 Equation (6)

Tkin4 Fourth-moment kinetic 1
2 m
√

4
Nd(d+2)∑

N
i=1 ⟨(vi − ⟨v⟩)4

⟩ Equation (9)

TMB Maxwell–Boltzmann
√

mtracer
2πkBTMB

exp{−mtracerv2
i

2kBTMB
}, i = x, y, z 30 Equation (12)

Position-based definitions

Tvir Virial γt lim
t→∞

∂tMSD(t) + 1
2Nd∑

N
i=1 ⟨ri ⋅ Fext,i −∑ j<i ri j ⋅ Fi j − γtv0ri ⋅ pi⟩ Equation (14)

Tosc Oscillator k⟨x2
⟩ 25 Equation (15)

Tconf Configurational ⟨(∇Utot)
2
⟩

⟨∇
2Utot⟩

26 and 57 Equation (17)

Dynamics-based definitions

TEin Einstein γtDeff Equation (18)

Teff Effective lim
t≫1

MSD(t)
2dχ(t) 16, 29, and 58 Equation (21)

In the following, we briefly introduce the different possibilities
to define temperature as used in this work and summarize some
known analytical results. The considered temperatures are presented
in Table I.

Before introducing the different possibilities to define temper-
ature, let us recap some general concepts known from equilibrium
physics. In particular, let us consider an equilibrium system of
N particles in three spatial dimensions and let Γ = (Γ1, . . . , Γ6N)

= (p1, . . . , p3N , q1, . . . , q3N) be the phase-space vector representing
the spatial coordinates qi and the conjugate momenta pi. Fur-
thermore, let the system be described by the Hamiltonian ℋ(Γ)
= ∑i p2

i /(2m) + V({q j}), where m denotes the mass of the particles
and V is the potential energy of the system. Based on the stan-
dard thermodynamic relation 1/T = dS(E)/dE with entropy S(E)
and energy E, one can show that the thermodynamic temperature
can be calculated as4

kBT =
⟨∇ℋ ⋅ B(Γ)⟩
⟨∇ ⋅ B(Γ)⟩

, (4)

where B(Γ) is an arbitrary vector field with 0 < ∣⟨∇ℋ ⋅ B(Γ)⟩∣, ∣⟨∇ ⋅
B(Γ)⟩∣ <∞ and ∇ is the gradient operator in the 3N-dimensional
space. Furthermore, ⟨∇ℋ ⋅ B(Γ)⟩ must grow slower than eN in
the thermodynamic limit.4 It should be noted that for B(Γ)
= (0, . . . , Γi, . . . , 0), we obtain the generalized equipartition theorem
kBT = ⟨Γi∂ℋ/∂Γi⟩. If Γi = pi, we recover the equipartition theorem
kBT = ⟨p2

i /m⟩,7 which we will exploit for some temperature defini-
tions in the following. In turn, if Γi is a coordinate qi, we obtain the
Clausius virial theorem kBT = −⟨qiFi⟩.8 From the general expression
in Eq. (4), we can directly derive different temperatures, such as the

kinetic temperature and the configurational temperature, as shown
in the following.

Velocity-based definitions

Velocity fluctuations can be used to define temperature either
based on the velocities of the active particles themselves or based on
the velocity distribution of tracer particles that are suspended in a
bath of active particles. Here, we consider the following possibilities
to define temperature based on velocities:

(1) Kinetic temperature: Starting from Eq. (4), we
can derive the kinetic temperature by choosing
B(Γ) = (0, . . . , 0, p1, . . . , p3N), which yields59,60

kBT = ⟨
1

3N

3N

∑
i=1

p2
i

m
⟩, (5)

where pi = mvi is the momentum of the ith particle. When
we consider the average translational kinetic energy Ekin
= 1

2∑
N
i=1 mi(vi − ⟨v⟩) ⋅ (vi − ⟨v⟩) (subtracting any possible

drift velocity ⟨v⟩), we can write the kinetic temperature as

kBTkin ∶=
1

Nd

N

∑
i=1

m⟨(vi − ⟨v⟩) ⋅ (vi − ⟨v⟩)⟩, (6)

where d is the spatial dimension. The kinetic temperature
is commonly used in the field of granular particles61–69

and complex plasmas,70,71 and it is equal to the thermo-
dynamic temperature in equilibrium systems where ⟨v⟩ = 0
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and Eq. (6) coincides with Eq. (5).6 It has also been fre-
quently used as a well-defined temperature definition in
active systems.16,24,25,51–56 It should be noted that the kinetic
temperature is proportional to the mass of the particles.
This has an important implication for the kinetic tem-
perature of (inertial) active particles: Free non-interacting
active particles move with their terminal speed v0 in the
steady state independently of their mass. Therefore, their
kinetic temperature strongly depends on their mass, as
shown in Fig. 1.

For the kinetic temperature in active systems, some
analytical results are known. For example, the kinetic tem-
perature of free non-interacting ABPs [u = 0 and Uext = 0 in
Eq. (1)] and similarly of active Ornstein–Uhlenbeck particles
(AOUPs; see Appendix A) can be written as35

kBTkin = kBTb +mv2
0α, (7)

where m is the mass of the particles and the dimensionless
coefficient α is given by

α =
τpγt/m

1 + τpγt/m
. (8)

The first term in Eq. (7) is the bath temperature that deter-
mines the strength of the Brownian noise. The second term
has a pure non-equilibrium origin and disappears in equilib-
rium. It should be noted that Eq. (7) can be obtained based
on the AOUP model leading to similar results as for ABPs
(see Appendix A). Further analytical results are shown in
Appendix B.

The previous definition of kinetic temperature is based
on the second moment of the velocity distribution. Similarly,
one can use higher moments to define a variant of the kinetic
temperature. Exemplarily, we introduce a temperature based
on the fourth moment. In particular, we obtain

kBTkin4 ∶=
1
2

m

¿
Á
ÁÀ 4

Nd(d + 2)

N

∑
i=1
⟨(vi − ⟨v⟩)4

⟩, (9)

FIG. 1. Kinetic temperature. Schematic visualization of the kinetic temperature of
active particles moving with a terminal self-propulsion speed v0. (a) Heavy active
particles feature a large kinetic temperature and (b) light active particles have a
low kinetic temperature. The color denotes the kinetic temperature, and the black
arrows denote the velocity of the particles.

where d = 1, 2, 3 is the spatial dimension. This temperature
is again equal to the bath temperature in equilibrium, i.e.,
for v0 = 0 in Eq. (1). It should be noted that Tkin = Tkin4 if
the velocity distribution 𝒫 (vi), i = x, y, z is Gaussian, i.e., if
𝒫 (∣v∣) follows the Maxwell–Boltzmann distribution.

(2) Maxwell–Boltzmann temperature: For free non-interacting
particles of mass m in a classical equilibrium gas at tempera-
ture T, the Maxwell–Boltzmann distribution reads72,73

𝒫 (vx, vy, vz) = (
m

2πkBT
)

3/2
exp{−

m(v2
x + v2

y + v2
z)

2kBT
}, (10)

i.e., each velocity component vi, i = x, y, z is Gaussian dis-
tributed,

𝒫 (vi) =

√
m

2πkBT
exp{−

mv2
i

2kBT
}. (11)

Within an equilibrium system, the Maxwell–Boltzmann dis-
tribution can be exploited to determine the temperature
of the system by measuring the velocity distribution of
the particles. However, since the velocity of active parti-
cles is generally not Maxwell–Boltzmann distributed, this
procedure is not directly applicable to active systems. In
turn, one could use passive tracer particles as a thermome-
ter (Fig. 2). While passive particles immersed in an active
bath can be out of equilibrium, there are some parameter
regimes, in which their velocity distribution approximately
has a Maxwell–Boltzmann shape.74,75 Therefore, their veloc-
ity distribution provides an approximate measure for the
temperature of the active particles, the Maxwell–Boltzmann
temperature TMB [Fig. 2(b)] defined via

𝒫 (vi) =

√
mtracer

2πkBTMB
exp{−

mtracerv2
i

2kBTMB
}, i = x, y, z, (12)

where mtracer denotes the mass of the tracer particle. It should
be noted that the Maxwell–Boltzmann temperature depends
on the tracer mass and on the interactions between the active
particles and the tracer. In fact, the tracer should follow the
slow dynamics of the active system, which is only guaran-
teed if the tracer is sufficiently heavy.30 In addition, the tracer
has to be small enough to not affect the structure of the
active system. It should be noted that there are parameter
regimes in which the velocity distribution is not Gaussian
anymore,75 and therefore, the Maxwell–Boltzmann temper-
ature cannot be calculated [see inset in Fig. 2(b)]. Hence,
we do not show the Maxwell–Boltzmann temperature in the
numerical results in this article.

Position-based definitions

We now introduce different possibilities to define temperature
based on the positions of active particles and tracers.

(3) Virial temperature: The virial theorem connects the average
kinetic energy of a system to its average potential energy by
1
2∑

N
i=1 m⟨vi ⋅ vi⟩ = −

1
2∑

N
i=1 ⟨ri ⋅ Fi⟩ and was first introduced
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FIG. 2. Maxwell–Boltzmann temperature. (a) A passive tracer particle (black)
that interacts with the surrounding active particles (gray) is used as a thermome-
ter for the active particles. (b) Velocity distribution (black dots) of passive tracer
particles in a bath of active particles. The Maxwell–Boltzmann temperature TMB is
obtained from the variance of a Gaussian (yellow line) fitted to the tracer velocity
distribution. The inset shows the velocity distribution for the passive particles in a
mixture of overdamped ABPs [m/(γtτp) = 5 × 10−5

] and inertial passive Brown-
ian particles [m/(γtτp) = 5 × 10−2

] at Pe = 100, φtot = 0.5, and xa = 0.9, where
xa denotes the fraction of active particles. In this parameter regime, the veloc-
ity distribution is clearly non-Gaussian, and therefore, the Maxwell–Boltzmann
temperature cannot be sensibly calculated. The data have been taken from
Ref. 75.

by Clausius in 1870.8 Here, Fi denotes the total force act-
ing on the ith particle. In equilibrium, the average virial
⟨V⟩ = − 1

2∑
N
i=1 ⟨ri ⋅ Fi⟩ can be connected to the thermody-

namic temperature T of the system by applying the equipar-
tition theorem as already done for the definition of the
kinetic temperature. This leads to the virial temperature
defined as

kBTvir ∶=
2

Nd
⟨V⟩, (13)

where d denotes the spatial dimension of the system and N
is again the number of active particles.76 For inertial ABPs
[Eqs. (1) and (2)] in the steady state, the virial temperature
can be written as (see Appendix C for details)

kBTABP
vir = γt lim

t→∞
∂t MSD(t)

+
1

2Nd

N

∑
i=1
⟨ri ⋅ Fext,i −∑

j<i
rij ⋅ Fij − γtv0ri ⋅ pi⟩,

(14)

with the mean-square displacement MSD(t) = ⟨ri(t)2
⟩

[assuming ri(0) = 0], interaction force Fij, and spatial dimen-
sion d. Hence, the virial temperature does only require infor-
mation about the positions and the forces but not about the
velocities of the particles. Therefore, it is also applicable to
simulations in the overdamped limit. It should be noted that
for free ABPs, the first term is equal to γtDeff, where Deff
is their effective diffusion coefficient, which we obtain from
their long-time MSD. All other contributions are directly cal-
culated from the particle trajectories by averaging over time
in the steady state.

(4) Oscillator temperature: Let us now consider a particle that
is confined in an external potential with a minimum at r = 0.

In equilibrium, the position fluctuations ⟨r2
⟩ are directly

related to the thermodynamic temperature (Appendix D).
For simplicity, let us consider a harmonic confinement, i.e.,
Uext(r) = kr2

/2.77–81 For non-interacting particles in equi-
librium, i.e., v0 = 0 and u = 0 in Eq. (1), one can show that
⟨r2

i ⟩ = kBT/k with i = x, y, z. It is tempting to generalize this
equilibrium result to define an oscillator temperature. There-
fore, assuming that the system is isotropic, we define the
oscillator temperature as80,82

kBTosc ∶= k⟨r2
i ⟩, i = x, y, z. (15)

There are two possibilities to measure the oscillator temper-
ature: first, one can place the active particles themselves in
the harmonic potential [Fig. 3(a)]. It should be noted that
in this scenario, for non-interacting particles in the limit of
vanishing Péclet number (ideal gas), the oscillator tempera-
ture coincides with the virial temperature. Second, one can
use a passive tracer particle trapped in a harmonic potential
and interacting with surrounding non-trapped active par-
ticles [Fig. 3(b)]. The latter scenario is closely related to
active heat engines, for which the definition in Eq. (15) has
been frequently used to map active heat engines onto an
effective equilibrium system with (time-dependent) effec-
tive temperature.83–86 In terms of a general temperature
definition, the tracer-based scenario has the drawback that
the obtained temperature values depend on the mass of the
tracer and its size, and defining a suitable tracer-based ther-
mometer is only possible when choosing sufficiently small
and heavy tracers.25,30 Furthermore, it has been shown that
the position distribution of the tracer becomes non-Gaussian
for certain k.87 In addition, in the former scenario, the
strength k of the harmonic potential has to be adjusted to
the self-propulsion speed of the active particles such that they
can still reach most positions inside the harmonic poten-
tial but cannot leave it across the periodic boundaries of
the simulation box. We remark that the dependence on the
potential strength makes the use of this temperature ques-
tionable. Moreover, the use of the oscillator temperature
causes problems when we consider interacting particles that
repel each other and fill up the trapping potential from the
center toward higher and higher potential values because
it does not account for the contributions from the interac-
tions between the particles. This inappropriately increases
the value of the oscillator temperature and leads to a density-
dependent temperature even in the equilibrium limit. Thus,
we will conclude that the oscillator temperature is an unsuit-
able temperature definition. In contrast, the virial temper-
ature consistently accounts for contributions from particle
interactions [Eq. (14)], which is equal to the oscillator tem-
perature in case of an ideal gas (see below). For simplicity, we
only calculate Tosc without using immersed tracer particles.

For non-interacting ABPs (and AOUPs), the oscillator
temperature has been calculated analytically and reads35

kBTosc = kBTb +
1 + τpγt/m

1 + τpγt/m + τ2
pk/m

v2
0τpγt. (16)
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FIG. 3. Oscillator temperature. (a) Schematic illustration of active particles in
a harmonic potential Uactive

ext (r) = kr2
/2, r =

√

x2
+ y2 of strength k. The inset

shows an exemplary distribution of the particle positions in x direction p(xactive)

from which Tosc can be determined from the variance of a Gaussian that is fitted to
the data. (b) Schematic visualization of a passive tracer particle (white) trapped in a
harmonic potential Utracer

ext (r) = kr2
/2, r =

√

x2
+ y2 of strength k and subject to

a bath of non-trapped active particles (gray), which collide with the tracer particle
(white arrows). The inset shows an exemplary distribution of the tracer position
in x direction p(xtracer) from which Tosc can be determined analogously as in
panel (a).

This expression is obtained from the AOUP model and coin-
cides with the results for ABPs. It reflects the dependence of
Tosc on the strength k of the harmonic potential and shows
that it also depends on the ratio τpγt/m.

(5) Configurational temperature: The configurational temper-
ature provides another possibility to define temperature
independently of the particle momenta. It can be derived
from Eq. (4) by choosing B(Γ) = −∇U tot({ri}), where
U tot({ri}) denotes the total potential energy of the system.
This yields59,60

kBTconf =
⟨∇Utot ⋅∇Utot⟩

⟨∇
2Utot⟩

. (17)

Here,∇ is again the gradient operator in the 3N-dimensional
space. Recently, Saw et al. used the configurational temper-
ature to measure the temperature of an active system.26,57

It should be noted that for non-interacting active particles,
U tot = Uext. In the special scenario of non-interacting parti-
cles in an external harmonic potential Uext(r) = kr2

/2, we get
Tconf = Tosc.

As shown in Fig. 4, the configurational temperature
measures how far a particle can ramp up the interaction
potential. It is large if the forces (∇U tot) are large and if the
curvature of the potential (∇2U tot) is small. Therefore, con-
tributions to Tconf from particles residing near the minimum
of the external potential and near the equilibrium distance for
interacting particles are small, i.e., if all particles are placed in
the potential minimum, Tconf = 0 [Fig. 4(b)].

Dynamics-based definitions

All previous possibilities to define temperature either exploit
the velocities or the positions of the particles. However, one can also
exploit dynamical properties of active systems to define temperature.
In particular, we present two approaches, one based on the Einstein

FIG. 4. Configurational temperature. (a) and (b) Exemplary harmonic potential
U(r) = kr2

/2 and the corresponding contributions to the configurational tem-
perature as defined in Eq. (17) as function of the distance r , respectively. (c)
Exemplary Weeks–Chandler–Anderson (WCA) potential as defined in Eq. (22) and
as used for the simulations in this work. (d) Corresponding contributions to the
configurational temperature as defined in Eq. (17) as function of the inter-particle
distance r .

relation and one following Cugliandolo and Kurchan based on linear
response theory.29,48

(6) Einstein temperature: Let us again consider free non-
interacting passive Brownian particles, i.e., v0 = 0, u = 0, and
Fext = 0 in Eq. (1). Then, the diffusion coefficient D is con-
nected to the bath temperature via the Einstein relation:
D = kBTb/γt.

88 We can now define a temperature for active
particles based on their effective long-time diffusion coeffi-
cient Deff, which can be calculated from the mean-square dis-
placement (MSD) of the active particles (Fig. 5), by exploiting
the Einstein relation. In particular, we define the Einstein
temperature TEin as89

kBTEin ∶= γtDeff. (18)

If the active particles interact with each other, i.e., u ≠ 0 in
Eq. (1), γt has to be replaced by an effective drag coefficient
γeff that is calculated from the response of a tracer particle
to a constant force F = Fex in the presence of the considered
active system, i.e.,

γeff = F/ lim
t→∞
⟨vx(t)⟩. (19)

It should be noted that for sufficiently low density, we have
γeff ≈ γt.

For free non-interacting inertial ABPs, the effective
diffusion coefficient has been calculated analytically and
reads42,90,91

DABP
eff = Dt +

v2
0τp

2
eSR S1−SR

R Γ(SR, 0, SR), (20)

where Dt = kBTb/γt denotes the translational diffusion coef-
ficient, SR =

I
τpγr

, and Γ(a, b, c) = ∫
c

b dq qa−1e−q. Here, I
denotes the moment of inertia of the active particles. In
the overdamped limit SR → 0, we obtain the following pop-
ular result for the active diffusion coefficient: Deff = Dt
+ v2

0τp/2,36,92,93 yielding kBTEin = kBTb + γtv2
0τp/2.
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FIG. 5. Einstein temperature. (a) Exemplary trajectories of free non-interacting
ABPs. The arrows denote the self-propulsion directions. (b) Mean-square dis-
placed (MSD) of the active particles and long-time effective diffusion coefficient
Deff yielding the Einstein temperature as defined in Eq. (18). (c) Alternative cal-
culation of the long-time diffusion coefficient Deff from the integral of the velocity
auto-correlation function (VACF) of the active particles.

(7) Effective temperature: Inspired from glassy systems9,10 and
following Refs. 16, 29, 58, and 94, we now define the so-
called effective temperature of an active system. This expres-
sion is inspired by linear response theory and is defined as
the ratio between the mean-square displacement MSD(t)
= ⟨[r(t) − r(0)]2⟩ and the susceptibility χ in the long-time
limit, i.e.,

kBTeff(t) ∶= lim
t≫1

MSD(t)
2dχ(t)

, (21)

where d is the number of spatial dimensions. To calculate
the susceptibility, one can use the Malliavin weights sam-
pling (MWS), as used in Refs. 16 and 29, or approaches that
are based on the simulation of a perturbed and an unper-
turbed system with the same noise realizations (Fig. 6).17,95,96

Here, we will use the latter approach to numerically deter-
mine Teff (see Appendix E for details). It should be noted
that the calculation of the effective temperature requires to
average over many independent ensembles, which is com-
putationally expensive. In particular, we average over 100
independent simulation runs for each data point and over
time in the diffusive long-time regime of the MSD. Due to the
high computational costs, we calculated the effective temper-
ature exemplarily for some parameter regimes, and we only
consider data points with reasonably good statistics, i.e., data
points with a standard deviation that is at least smaller than
the value itself.

SIMULATION RESULTS
Brownian dynamics simulations of the ABP model

To systematically compare the introduced possibilities to
define temperature, we perform Brownian dynamics simulations
of systems of N = 2 × 104 inertial ABPs as described by Eqs. (1)

FIG. 6. Effective temperature. Schematic visualization of the calculation of the
effective temperature Teff as defined in Eq. (21). Starting from a snapshot of the
system of active particles in the steady state [panel (a)], a copy of the system is
created and perturbed by a small perturbing force at a fixed time t = t0 [orange
arrows in panel (e)]. The original system [panel (b)] and the perturbed system are
then simulated with the same noise realizations up to a time t ≫ t0 [panels (c) and
(f)]. From the unperturbed system, the mean-square displacement [MSD, panel
(d)] is calculated and from the comparison of both systems, the susceptibility χ(t)
is obtained. Finally, this leads to Teff following Eq. (21).

and (2). The interaction between the ABPs is modeled by the
Weeks–Chandler–Anderson (WCA) potential,97

u(rij) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

4ε
⎡
⎢
⎢
⎢
⎢
⎣

(
σ
rij
)

12

− (
σ
rij
)

6⎤
⎥
⎥
⎥
⎥
⎦

+ ε, rij/σ ≤ 21/6,

0, else

(22)

with particle diameter σ, strength ε, and rij = ∣ri − r j ∣. We use
the particle diameter σ as length unit, the persistence time
τp = 1/Dr as time unit, and kBTb as energy unit. Here, Dr = kBTb/γr
denotes the rotational diffusion coefficient and Tb is the bath
temperature. We fix the interaction strength to ε/(kBTb) = 10 or
to ε = 0 for non-interacting particles. For simplicity, we choose
γt = γr/σ

2. As free parameters, we vary the dimensionless mass
M = m/(γtτp) = τm/τp (and accordingly, the moment of inertia I),
the Péclet number Pe = v0/

√
2DrDt (which quantifies the strength

of self-propulsion relative to diffusive motion), and the total pack-
ing fraction φtot = Nπσ2

/(4A), where A = L2 is the area of the
two-dimensional quadratic simulation box of box length L. Here,
Dt = kBTb/γt is the translational diffusion coefficient and τm = m/γt
is the inertial time scale. The Langevin equations [Eqs. (1) and (2)]
are solved numerically with LAMMPS98 using a time step Δt/τp
= 10−5 and periodic boundary conditions. We run the simulations
first for a time of 200τp to reach a steady state and afterward for
a time of 800τp for computing time averages of observables in the
steady state. For simulations in a harmonic confinement, we have
chosen k∝ 2γtv0/L such that ∣Fext(L/2)∣ = γtv0 to ensure that the
active particles are able to reach each position in the harmonic
potential but cannot leave it across the periodic boundaries of the
simulation box. All simulation data have been analyzed with Python
using the recently developed active matter evaluation package
(AMEP).99

Péclet dependence

Let us first discuss the Pe dependence of the considered tem-
peratures. For simplicity, we only consider parameter regimes in
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FIG. 7. Pe dependence. Temperature
as function of Péclet number Pe for
three different masses M = m/(γtτp)

as given in the key. (a)–(c) The results
for non-interacting ABPs and (d)–(f) for
interacting ABPs at total packing fraction
of φtot = 0.025. For the non-interacting
case, analytical expressions are shown
for the kinetic temperature [Tkin,analytic,
Eqs. (7) and (8)], for the oscillator
temperature [Tosc,analytic, Eq. (16)], and
for the Einstein temperature [TEin,analytic,
Eqs. (18) and (20)]. The black dashed
line denotes the bath temperature Tb.

which the system does not phase separate39 and study two scenar-
ios: non-interacting ABPs and interacting ABPs at total packing
fraction φtot = 0.025. To scan all regimes from the near-equilibrium
case to the strongly active regime, we vary Pe from Pe = 0.125
to Pe = 256. To also explore different regimes from the strongly
inertial regime to the overdamped regime, we determine the temper-
ature for three different masses M ∈ {0.0004, 0.1, 6.25}. The results
are shown in Fig. 7 together with the corresponding analytical
expressions for non-interacting ABPs as discussed above. These
expressions perfectly match with the numerical results obtained
from the Brownian dynamics simulations [Figs. 7(a)–7(c)]. As
expected, all temperatures increase with increasing Pe (Fig. 7).
For very low Pe, the system essentially behaves as an equilib-
rium system and all temperatures coincide (except for the oscillator
temperature for interacting ABPs as we discuss in more detail in
the following).

Non-interacting active particles

Let us now first focus on the non-interacting case. Here, for
large mass M [Fig. 7(a)], all temperatures lead to the same value
and the curves collapse to one master curve. In this case, the per-
sistence time τp is small compared to the inertial time τm, which
leads to a vanishing entropy production rate such that the system
approaches an effective equilibrium state.23,34,35 When decreasing
the mass, i.e., for τp/τm ≫ 1, different temperatures generally lead
to different values [Figs. 7(b) and 7(c)]. Notably, the two kinetic
temperatures Tkin and Tkin4 lead to very similar temperature val-
ues suggesting that the velocity distributions are approximately
Gaussian. Remarkably, Tosc and TEin also lead to very similar tem-
perature values even for very large Pe, where they significantly
differ from Tkin and Tkin4. In fact, we find Tosc ≥ Tkin in accor-
dance with previous literature.80 It should be noted that Tosc and
Tkin might coincide after doing a force renormalization as demon-
strated in Ref. 100. The difference to the kinetic temperatures further
increases when decreasing the mass of the active particles [Figs. 7(b)
and 7(c)] indicating that velocity-based definitions strongly depend
on the dimensionless particle mass while Tosc and TEin do not as
we shall see. The effective temperature Teff is similar to Tosc and

TEin [Figs. 7(a) and 7(b)]. It should be noted that we show only
a few data points for Teff because its computation is numerically
rather costly.

Interacting active particles

If we now consider interactions between the active particles,
we qualitatively obtain the same results. Again, all temperature val-
ues obtained with the different possibilities to define temperature
except the oscillator temperature coincide for large masses and lead
to the bath temperature at small Pe [Fig. 7(d)]. However, the oscilla-
tor temperature Tosc saturates at a temperature larger than the bath
temperature. This is because (i) the confining potential pushes the
particles together such that the particles may form a dense cluster
around the minimum of the confining potential and (ii) not all par-
ticles can be placed in the potential minimum in the initial state of
the simulation. The latter adds some additional potential energy to
the particles. As a consequence, particles at the border of the clus-
ter have a large potential energy and lead to a large contribution
to the position fluctuations ⟨r2

⟩. Hence, the oscillator temperature
can reach values higher than the bath temperature even for passive
particles. In particular, as mentioned earlier, the oscillator temper-
ature does not appropriately consider contributions coming from
the interaction forces between the particles. In turn, the virial tem-
perature systematically considers these contributions and, therefore,
leads to correct temperature values. Hence, the oscillator tempera-
ture is considered as unsuitable to measure temperature. At large Pe,
another deviation is visible: the Einstein temperature TEin and the
virial temperature Tvir lead to smaller temperature values at large Pe
compared to the other temperature values especially in the case of
large particle mass [Fig. 7(d)]. This is because collisions slow down
the particles and lead to a smaller diffusion coefficient. This effect
is stronger at large Pe due to a higher collision rate and it is also
stronger for heavier active particles because they need a compara-
tively long time to reach their terminal speed after each collision.
However, similar to the non-interacting scenario, the Einstein tem-
perature TEin and the oscillator temperature Tosc almost coincide
at intermediate and small masses and for large Pe [Figs. 7(d)–7(f)].
This is because they both effectively measure position fluctuations
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FIG. 8. Mass dependence. Tempera-
ture as a function of the particle mass M
= m/(γtτp) for three different values of
Pe as given in the key. (a)–(c) The results
for non-interacting ABPs and (d)–(f) for
interacting ABPs at total packing fraction
of φtot = 0.025. For the non-interacting
case, analytical expressions are shown
for the kinetic temperature [Tkin,analytic,
Eqs. (7) and (8)], for the oscillator
temperature [Tosc,analytic, Eq. (16)], and
for the Einstein temperature [TEin,analytic,
Eqs. (18) and (20)]. The black dashed
line denotes the bath temperature Tb.

and, therefore, approximately coincide. It should be noted that TEin,
Tvir, and Tosc do not coincide with the other temperatures because
they have a weaker mass dependence as we will discuss further.
Remarkably, the configurational temperature Tconf coincides with
Tkin and Tkin4 for all parameters [Figs. 7(d)–7(f)]. It measures how
far an active particle can ramp up the interaction potential, and
therefore, it is directly related to the kinetic energy of the particles
that is converted into potential energy during collisions for exam-
ple. Hence, Tconf leads to very similar temperature values as Tkin
and Tkin4.

Mass dependence

To obtain further insights into the parameter dependencies
of the different temperatures, we now analyze the mass depen-
dence in more detail. We vary M = m/(γtτp) from 0.0004 to 6.25
for Pe ∈ {0, 16, 64}. The results are shown in Fig. 8 again together
with the analytical results for non-interacting ABPs. For the latter,
the numerical results perfectly coincide with analytical expressions
discussed above [Figs. 8(a)–8(c)]. As expected from equilibrium
thermodynamics, all temperatures lead to the same temperature val-
ues, namely, the bath temperature Tb, for Pe = 0. For Pe > 0, the
different temperatures again lead to different temperature values and
exhibit an important mass dependence: While the oscillator temper-
ature Tosc does not depend on M and the Einstein temperature, the
effective temperature, and the virial temperature only show a weak
mass dependence, both kinetic temperatures Tkin and Tkin4 as well as
the configurational temperature Tconf feature a strong mass depen-
dence (Fig. 8). In the absence of interactions, this is because the
particles move with their terminal self-propulsion speed ⟨∣v∣⟩ ≈ v0,
and accordingly, we have Tkin ≈ mv2

0/2∝ m for large Pe. Thus, for
m→ 0 (i.e., M → 0), the active contribution to Tkin vanishes and we
have Tkin ≈ Tb. In turn, TEin, Teff, Tvir, and Tosc only slightly depend
on M [Figs. 8(b) and 8(c)]: Their calculation is based on position
fluctuations, which depend only weakly on M in some parameter
regimes if the particles (on average) move with their terminal self-
propulsion speed v0. The observed trends are robust and still apply
in the presence of interactions [Figs. 8(d)–8(f)].

Mass scaling

From Fig. 8, we see that some temperature definitions strongly
depend on the mass of the active particles. Inspired by the pro-
portionality to m of the kinetic temperatures for large Pe, where
⟨v⟩ ≈ v0 [Eqs. (6) and (9)], we divide all temperatures that show a
strong mass dependence (Tkin, Tkin4, and Tconf) by M = m/(γtτp)

(Figs. 9 and 10). From the Pe-dependence, we see that now all
definitions lead to similar temperatures at large Pe for both non-
interacting and interacting ABPs (Fig. 9). It should be noted that
the regime in which the (rescaled) temperatures coincide is larger
if the active particles are heavier. This is reflected by the analytical

FIG. 9. Pe dependence of rescaled temperatures. Temperature as a function of
Pe for two different masses M = m/(γtτp) as given in the key. All temperatures
with a strong mass dependence are rescaled with M. (a) and (b) The results for
non-interacting ABPs, i.e., u = 0 in Eq. (1). (c) and (d) The results for interacting
ABPs at total packing fraction φtot = 0.025. The black dashed line denotes the
bath temperature Tb.
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FIG. 10. Mass dependence of rescaled temperatures. Temperature as a func-
tion of the dimensionless particle mass M = m/(γtτp) for two different Pe as given
in the key. All temperatures with a strong mass dependence are rescaled with M.
(a) and (b) The results for non-interacting ABPs, i.e., u = 0 in Eq. (1). (c) and (d)
The results for interacting ABPs at total packing fraction φtot = 0.025. The black
dashed line denotes the bath temperature Tb.

expressions discussed above, which show that for low or moderate
Pe, the kinetic temperature is not simply proportional to m but has
a more complicated mass dependence encoded, for example, in the
factor α [cf. Eq. (8)]. This becomes visible in Fig. 10, which reflects
that the different temperatures do of course not fully match even if
rescaled with M.

Effect of the packing fraction

Finally, we exemplarily analyzed the effect of the total pack-
ing fraction on the values of the kinetic temperatures Tkin and
Tkin4, the configurational temperature Tconf, and the Einstein tem-
perature TEin. We have chosen the total packing fraction as
φtot ∈ {0.025, 0.05, 0.1, 0.2} such that the system is still uniform and
does not undergo MIPS25,39,101 and fixed an intermediate mass
of M = 0.1. As shown in Fig. 11, increasing the packing fraction
decreases the temperature values but the overall Pe dependence is

the same. This is because increasing the total packing fraction leads
to an increased collision rate. The collisions tend to slow down the
active particles and hinder the particles to reach their self-propulsion
speed v0. Hence, increasing the packing fraction opposes the effect of
activity on the average speed of the particles and reduces the values
of the considered temperatures. Close to equilibrium, all temper-
atures are equal to the bath temperature for all packing fractions
except for the Einstein temperature [Fig. 11(d)]. Here, we have used
the same drag coefficient γt for all packing fractions to calculate
TEin. However, increasing φtot reduces the MSD and, hence also TEin.
In particular, the resulting diffusion coefficient becomes smaller for
larger packing fraction. Hence, TEin also decreases with increasing
φtot. This also happens close to equilibrium and leads to an Einstein
temperature slightly lower than the bath temperature. One could
compensate for this effect by calculating the effective drag coefficient
as shown in Eq. (19).

CONCLUSIONS

Our analytical and numerical results show that different possi-
bilities to define temperature typically lead to different temperature
values. However, close to equilibrium, all temperatures coincide. In
active systems, one can approach (effective) equilibrium states in
two ways, First, in the limit Pe→ 0, activity vanishes and the system
forms an equilibrium system made of passive Brownian particles,
for which all temperatures coincide with the bath temperature. Sec-
ond, in the limit M →∞, the persistence time τp becomes small
compared to the inertial time τm = m/γt. Then, the motion of the
active particles is dominated by (rotational) diffusion and the system
reaches an effective equilibrium state at a higher temperature than
the bath temperature. This is also indicated by a vanishing entropy
production rate in the limit 1/M = τp/τm → 0.17,34

It is now tempting to distinguish between “good” and “bad”
temperature definitions: a “good” temperature definition should
provide consistent temperature values that are independent of
details of the thermometer and the confining potential. Therefore,
we conclude that the oscillator temperature and any tracer-based
temperature definition generally can be considered as a compar-
atively “bad” definition of temperature in active systems. This is
because the oscillator temperature strongly depends on the potential
strength k and bears the risk of not agreeing with the bath tem-
perature in the equilibrium limit for interacting particles because
it does not appropriately account for interaction forces compared
to the virial temperature for example. In turn, any tracer-based

FIG. 11. Effect of the packing fraction. Temperature values for a fixed mass M = 0.1 as a function of the Péclet number Pe and at different total packing fractions φtot
(indicated in the keys) for (a) the kinetic temperature Tkin, (b) the fourth-moment kinetic temperature Tkin4, (c) the configurational temperature Tconf, and (d) the Einstein
temperature TEin. The black dashed line denotes the bath temperature Tb.
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definition requires heavy and small tracer particles such that they
(i) follow the slow dynamics of the active system and (ii) do not
affect its structure.25,30 Furthermore, some temperatures are compu-
tationally demanding such as the effective temperature. In contrast,
all other temperatures can be considered as comparatively “good”
in the sense that they do not suffer from these drawbacks. While
their values of course depend on details of the considered sys-
tem (dimensionless parameters such as the reduced mass, Péclet
number, and packing fraction), we found that several temperatures
approximately coincide even far from equilibrium. Concretely, the
kinetic temperature Tkin, the fourth-moment-based kinetic temper-
ature Tkin4, and the configurational temperature Tconf constitute a
class of temperatures that all assume very similar temperature val-
ues over a wide parameter range. Notably, the virial temperature
Tvir, the Einstein temperature TEin, the oscillator temperature Tosc,
and the effective temperature Teff form a second class of temper-
atures whose values approximately coincide with each other but
which strongly differ from those of the first class. Beyond that, we
found that the two different classes of temperatures can be matched
in the far-from equilibrium regime where the system is dominated
by activity (large Pe, small mass) by rescaling temperatures with
the particle mass.

Overall, regarding the question “how to define temperature in
active systems,” we note that our numerical results reflect the gen-
eral expectation that far from equilibrium, different temperatures
lead to different temperature values. This is because the particle
positions and velocities are non-trivially coupled in active systems
and, in general, often follow different non-Boltzmann distributions.
This implies that it is impossible to uniquely quantify fluctuations
in active systems based on a single temperature parameter. How-
ever, beyond this generic fact, we found that certain possibilities to
define temperature are advantageous over others in the sense that
they are (i) easy to calculate from numerical (or experimental) data,
(ii) do not depend on properties of the used “thermometer” such as
tracer size and mass or a confining potential, and (iii) mutually lead
to similar temperature values over a wide parameter regime. In par-
ticular, the kinetic temperatures Tkin, Tkin4, and the configurational
temperature Tconf have these advantages.

The present study serves as a starting point toward a system-
atic classification and unification of different possibilities to define
temperature in active systems. It invites further studies to generalize
the suggested temperature definitions and to fundamentally explain
and exploit the identified temperature classes that lead to similar
temperature values. Such studies could also answer the fundamental
question of which of the presented temperatures can be interpreted
as a measure for the direction of energy transfer as heat. Of course,
alternatively, for non-homogeneous systems, one can choose to give
up the definition of a global temperature altogether in far-from-
equilibrium systems and to define a local temperature instead, which
can be done by calculating the presented temperature definitions in
a subdomain of the considered system.
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APPENDIX A: THE ACTIVE ORNSTEIN–UHLENBECK
PARTICLE MODEL

The active Ornstein–Uhlenbeck particle (AOUP) model rep-
resents an alternative model to the ABP model and is commonly
used for analytical calculations.36,102–104 Similar to the ABP model,
the AOUP model is a dry model, and the translational degrees of
freedom follow the Langevin equation given in Eq. (1) in the main
text. In contrast, in the case of AOUPs moving in two spatial dimen-
sions, the orientation vector pi is represented by a two-dimensional
Ornstein–Uhlenbeck process that allows both the modulus pi and
the orientation angle ϕi to fluctuate with related amplitudes. The
dynamics of pi is described by

dpi
dt
= −

pi
τp
+

√
1
τp

χi, (A1)

where again τp = 1/Dr denotes the persistence time and χi is Gaus-
sian white noise with zero mean and unit variance.35,36,102 It should
be noted that with the notation used here, both the ABP and the
AOUP models share the same autocorrelation function of the ori-
entation vector pi with an exponential shape, i.e., ⟨pi(t) ⋅ pi(0)⟩
= exp(−t/τp) and thus also the same equal-time second moment
⟨p2

i ⟩ = 1.105,106 The difference between the two models is visible in
the higher-order moments and the full-shape of the active-force dis-
tribution. Indeed, the latter is Gaussian in the case of AOUPs but it
is characterized by a constant modulus in case of ABPs.106

APPENDIX B: ANALYTICAL RESULTS FOR THE KINETIC
TEMPERATURE

In the main text, we discussed the analytical expression of
the kinetic temperature for free non-interacting ABPs. Let us now
consider a few more complicated setups. By confining the system
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through an external harmonic potential Uext(r) = kr2
/2, for the

AOUP case [Eq. (A1)], one obtains35

α =
τpγt/m

1 + τpγt/m + τ2
pk/m

. (B1)

Since the second moments of the distribution for ABPs and AOUPs
are equal, this result holds also for ABPs. Equation (B1) shows that
the harmonic confinement reduces the kinetic temperature. In the
overdamped regime, i.e., τpγt/m≫ 1, Eq. (B1) simplifies to

α =
1

1 + τpk/γt
. (B2)

For a general external potential Uext, exact analytical results are not
known. However, naively, we can derive an approximate result based
on an equilibrium-like approximation obtained in the overdamped
regime, which reads107

α ≈ [1 +
τp

γt
∇

2Uext(r)]
−1

. (B3)

It should be noted that this result is consistent with Eq. (B2) for the
harmonic external potential in the overdamped regime.

For interacting active particles, there are no simple analytical
expressions for the kinetic temperature except in very dense sys-
tems displaying a solid configuration. In this case, for AOUPs, we
obtain108

kBTAOUP
kin = kBTb +

v2
0τpγt

1 + τp/τI + 6ω2
Eτ2

p

ℐ
π

. (B4)

The term ω2
E reads

ω2
E =

1
2m
(u′′(x̄) +

u′(x̄)
x̄
), (B5)

where x̄ is the average distance between different particles, i.e., the
lattice constant of the crystal, u is the interaction potential, and ℐ is
a numerical factor that shows a non-trivial dependence on τp, m/γt,
and ωE.108 We remark that the kinetic energy of a single active par-
ticle in a solid configuration is smaller than the kinetic energy of a
free active particle: In the solid, the neighboring particles hinder the
motion of a target particle and decrease its kinetic energy.

APPENDIX C: VIRIAL TEMPERATURE FOR INERTIAL
ABPS

For inertial ABPs [Eqs. (1) and (2)], the virial temperature can
be calculated by inserting the total force, i.e., the right-hand side of
Eq. (1). This leads to four contributions: the first contribution comes
from the drag force −γtvi and involves the correlation function
⟨ri ⋅ vi⟩. In the steady state, it can be rewritten in terms of the
effective diffusion coefficient,

2⟨ri ⋅ vi⟩ = ∂t⟨ri ⋅ ri⟩ = ∂tMSD(t)ÐÐÐ→
t≫1

∂t(2dDefft) = 2dDeff. (C1)

This contribution is equal to the Einstein temperature as defined
in Eq. (18). The second contribution comes from the effective self-
propulsion force γtv0pi. It contains the correlation ⟨ri ⋅ pi⟩ between

the position and orientation of the active particles. The third contri-
bution involves the Gaussian white noise

√
2kBTbγtξi. It leads to the

correlation ⟨ri ⋅ ξi⟩ = 0.42 The remaining contribution involves the
interaction forces Fij = −∇ri u(rij) and possible external forces. The
contribution from the interaction forces can be written as

N

∑
i=1
⟨ri ⋅ Fi⟩ =

N

∑
i=1

N

∑
j=1,j≠i

⟨ri ⋅ Fij⟩

=
N

∑
i=2

i−1

∑
j=1

ri ⋅ Fij +
N

∑
i=2

i−1

∑
j=1

rj ⋅ Fji

=
N

∑
i=2

i−1

∑
j=1
(ri − rj) ⋅ Fij

=
N

∑
i=1
∑
j<i
⟨rij ⋅ Fij⟩ (C2)

by applying Newton’s third law and using Fi = ∑
N
j=1, j≠i Fij . Here,

we use rij = ri − rj. Finally, we can write the virial temperature for
inertial ABPs as

kBTABP
vir = γt lim

t→∞
∂tMSD(t)

+
1

2Nd

N

∑
i=1
⟨ri ⋅ Fext,i −∑

j<i
rij ⋅ Fij − γtv0ri ⋅ pi⟩. (C3)

APPENDIX D: DERIVATION OF THE OSCILLATOR
TEMPERATURE

Consider a passive tracer particle trapped in a harmonic poten-
tial and suspended in a bath of Brownian particles. Due to the colli-
sions of the bath particles with the tracer, the latter is driven by these
collisions, which can be modeled as random driving force following
a Gaussian white noise process. Let x denote the displacement of the
tracer particle with respect to its equilibrium position (here only in
one spatial dimension for simplicity). Then, the equation of motion
for the tracer particle of mass m reads

mẍ = −γẋ − kx +
√

2kBTγξ(t), (D1)

with the drag coefficient γ of the bath, the force constant k, and
Gaussian white noise ξ(t) of zero mean and unit variance. Here, T
denotes the temperature of the bath, which is related to the position
fluctuations ⟨x2

⟩ via

⟨x2
⟩ =

kBT
k

. (D2)

This relation can be derived as follows: first, we write down the
Fokker–Planck equation for the probability density 𝒫 (x, v, t) with
v = ẋ by following the standard text book,109

∂𝒫
∂t
= {

γ
m
− v

∂

∂x
+ (

γ
m

v +
k
m

x)
∂

∂v
+

kBTγ
m2

∂2

∂v2 }𝒫 . (D3)

Now, it can be shown that the solution of the Fokker–Planck
equation is given by109,110

𝒫 (x, v) =
1
A

exp{−
1

kBT
(

1
2

mv2
+

1
2

kx2
)}, (D4)
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which is simply the Boltzmann distribution with normalization con-
stant A = ∫dx ∫dv𝒫 (x, v).111 Then, the position fluctuations can be
determined as

⟨x2
⟩ =
∫dx ∫dvx2𝒫 (x, v)
∫dx ∫dv𝒫 (x, v)

=
∫dxx2 exp{− kx2

2kBT }

∫dx exp{− kx2

2kBT }

=

√
π

2
(

2kBT
k
)

(3/2)
√

k
2πkBT

=
kBT

k
, (D5)

where we have used Eqs. (21.24b) and (21.25) from Ref. 112, p. 1100.

APPENDIX E: THE EFFECTIVE TEMPERATURE

The effective temperature is based on linear response theory
and the fluctuation dissipation theorem (FDT). It can be derived
as follows: let us consider a (weak) time-dependent perturba-
tion that couples to an observable A. Then, the linear response
function, which describes the response of an observable B to the
time-dependent perturbation, is given by

RAB(t, t′) = −
1

kBT
⟨Ḃ(t)A(t′)⟩, (E1)

where the average ⟨⋅⟩ is taken over the unperturbed system.113 It is
related to the time-integrated linear response (susceptibility) by

χAB(t, 0) =
t

∫

0

dt′ RAB(t, t′), (E2)

following the notation in Ref. 29. By setting A = B = x, where x
denotes the position of a particle in x direction, one can show that

χxx(t, 0) =
t

∫

0

dt′ Rxx(t, t′) =
1

kBT

t

∫

0

dt′
t′

∫

0

dt′′ ⟨ẋ(t′)ẋ(t′′)⟩

=
1

2kBT

t

∫

0

dt′
t

∫

0

dt′′ ⟨ẋ(t′)ẋ(t′′)⟩

=
1

2kBT
MSD(t), (E3)

with the mean-square displacement MSD(t) = ⟨[x(t) − x(0)]2⟩.
Hence, the FDT for the time-integrated linear response reads

2kBTχxx(t) =MSD(t). (E4)

Following Ref. 29, this can be generalized to d spatial dimensions,

2dkBTχ(t) =MSD(t), (E5)

with

χ(t) =
t

∫

0

dt′′
d

∑
α=1

Rαα(t, t′′). (E6)

In order to define an effective temperature for systems out of equi-
librium, one introduces a time-dependent effective temperature
Teff(t), which is defined by16,29

kBTeff(t) =
MSD(t)
2dχ(t)

. (E7)
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