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Abstract Intelligent decisions in response to external informative input can allow organisms to achieve
their biological goals while spending very little of their own resources. In this paper, we develop and study
a minimal model for a navigational task, performed by an otherwise completely motorless particle that
possesses the ability of hitchhiking in a bath of active Brownian particles (ABPs). Hitchhiking refers to
identifying and attaching to suitable surrounding bath particles. Using a reinforcement learning algorithm,
such an agent, which we refer to as intelligent hitchhiking particle (IHP), is enabled to persistently navigate
in the desired direction. This relatively simple IHP can also anticipate and react to characteristic motion
patterns of their hosts, which we exemplify for a bath of chiral ABPs (cABPs). To demonstrate that the
persistent motion of the IHP will outperform that of the bath particles in view of long-time ballistic motion,
we calculate the mean-squared displacement and discuss its dependence on the density and persistence time
of the bath ABPs by means of an analytic model.

1 Introduction

Living organisms possess the ability to consume energy
from the environment and utilise it for developing bio-
logically advantageous strategies. One famous exam-
ple is swimming organisms which turn this energy
into directed self-propelled motion [1,2]. This active
behaviour leads to several advantages when it comes
to efficiently exploring space, finding new resources
or escaping predators. In the usual scenario, however,
directed motion alone is barely a sufficient tool for most
organisms when it comes to the preservation of one’s
livelihood. Therefore, the archetypal survival strategy
in biology incorporates at least a coupling to a rudi-
mentary form of intelligence, which is characterised by
a sensory input and a means of interpretation [3–6].
In the human world, it is utterly common that motor-
less individuals utilise the means of motorisation of oth-
ers. This behaviour, popularly termed hitchhiking [7],
originates from the desire to optimise one’s spending of
energy, e.g. for economical or ecological reasons.

There are also a lot of motorless organisms in nature,
such as certain species of bacteria, archaea, algae,
marine plankton or atmospheric aeroplankton [8], which
thrive despite entirely lacking the ability for self-
propulsion. For example, airborne spores and pollen
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rely on wind currents [9] or terrestrial dust storms [10]
as their only means of transportation. Even the con-
cept of human hitchhiking is found in more evolved life
forms, which developed ingenious navigational strate-
gies that involve attaching themselves to other, usually
larger, species [11–14]. Specifically, many marine organ-
isms such as Barnacles, Jellyella and also microscopic
bacteria can move over considerable distances, through
layers of the ocean, or travelling upstream along with
their hosts [13–17]. Other species elevate the concept
of hitchhiking by forming symbiotic relationships that
surpass the mere desire for transportation. In addition
to being able to swim on its own, the suckerfish attaches
to larger hosts, profiting from the protection, nutrition
and fast incoming water flows, which aids its respira-
tion, while, conversely, the host profits from the pro-
vided skincare [18,19].

Due to the interdisciplinary importance of active
motion [20], huge efforts were dedicated to theoretically
characterise the self-propulsion in both living matter
and inanimate systems [21–23]. One standard model is
active Brownian particles (ABPs), which propel them-
selves with a constant velocity along their instantaneous
orientation that undergoes rotational diffusion. This
toolbox has stimulated theoretical predictions, ranging
from analytic results on the single particle level [24–
27] to insight into a vast range of collective phenomena
[28–31]. For a more realistic description of natural or
artificial experimental systems [32–34], several generali-
sations of the ABP model were devised, including chiral
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ABPs (cABPs) which tend to move in circles [35–38],
anisotropic self-propelled particles which have differ-
ent angular dynamics [24,39] and can collectively align
their direction of motion [40], or active Langevin par-
ticles which incorporate the ubiquitous inertial effects
from the macroscopic world [41,42]. Most notably,
more recent research avenues evoke machine learning to
gain deeper physical insight into active matter systems
[43,44] or explore the idea of supplementing the ABP
model with machine learning tools to enhance their nav-
igation abilities [45–49]. The persistent motion of intel-
ligent motorless matter has received considerably less
attention.

Here, we provide a minimal model for understand-
ing hitchhiking in nature. More specifically, we place a
single intelligent hitchhiking particle (IHP) in a bath
of ABPs. The IHP is unable to propel itself but can
attach itself to the ABPs and follow their path. To
model sensory input coupled with intelligent decision-
making aiming towards directed motion, this attach-
ment is steered through reinforcement learning [50].
The learning objective is to reach the top of the simu-
lation box as fast as possible, while the perceived infor-
mation about the surrounding bath is limited. Over the
course of the training protocol, the IHP deduces a strat-
egy which allows it to selectively attach to bath ABPs
with favourable orientations. The final selection rule
depends on the bath particles’ degree of persistence,
indicating that the IHP can balance between (i) accept-
ing a possibly longer waiting time and only joining for
highly promising travel directions (better for a highly
persistent bath) or (ii) taking the odds for a larger range
of initial travel directions (better for more erratic move-
ment of bath particles). The symmetry of this transport
problem is broken by the possibility to let go of the
travel partner if its orientation turns out to develop
unfavourably. Moreover, the IHP learns to anticipate
the circular movement of cABPs by shifting the inter-
val of favourable orientations according to the circular
frequency of such bath particles. Once acquired, the
IHP’s strategy can also be transferred to a system of
particles interacting with a soft potential.

This paper is structured as follows. In Sect. 2 we
describe the Q-learning process and our different IHP
models, which we then analyse in Sect. 3 to discuss
how the learning results and persistent motion depend
on the properties of the active bath. We conclude in
Sect. 4

2 Models for an intelligent hitchhiking
particle (IHP)

As illustrated in Fig. 1, our model consists of a
two-dimensional environment of non-interacting active
Brownian particles (ABPs) constituting potential travel
partners of the intelligent hitchhiking particle (IHP).
Since it possesses no own means of propelling, its move-
ment is governed by that of the ABP to which it tem-

Fig. 1 Hitchhiking strategy to perform persistent Brow-
nian motion. An intelligent hitchhiking particle (IHP,
green/red or dark/light grey) is immersed in a bath of non-
interacting active Brownian particles (ABPs, cyan). Each
ABP moves in a certain direction for their persistence length
lp (see Fig. 2 for details on the model). The IHP learns to
fulfil a navigational task by making binary decisions whether
to attach and follow the closest ABP (action: GO, green or
light grey) or not to attach or let go (action: NO GO, red or
dark grey). The fully trained IHP can then persistently move
to the top (green trajectory), i.e. in positive y-direction, on
a length scale much larger than lp (see the scale bar at the
bottom left), changing its travel partner if necessary (red
dots). This decision diagram, resulting from a Q-learning
algorithm, is displayed as a pie chart decorating the IHP,
whose colour indicates the chosen action depending on the
current orientation (cyan arrows) of the nearest ABP (see
Fig. 3 for details on the learning process)

porarily attaches. The ultimate goal is to learn a strat-
egy, which allows the IHP to travel in the intended
direction as fast as possible. The motion pattern result-
ing from a successful hitchhiking strategy is exemplified
in the supplementary video.

The essence of our model is summarised in Fig. 2, and
details are given in the remainder of this section. The
stochastic dynamics of the bath ABPs is characterised
by persistent motion in the direction of their current
orientations φi, which we recapitulate in Sect. 2.1. The
training process, in which the IHP learns how to inter-
act with its environment, is described in Sect. 2.2. The
central learning objective is to obtain a decision dia-
gram, representing an interval ΦGO of favourable angles
on the unit circle, such that the IHP wants to attach
to an ABP (denoted by GO) if φi ∈ ΦGO and does
not want to attach or let go (denoted by NO GO) if
φi /∈ ΦGO. To characterise the IHP’s behaviour, we thus
introduce a GO angle Δφ, which specifies the size of
this interval, and an anticipation angle φ0, indicating
its location on the unit circle. Thus, we have (always
implying a 2π-periodicity of the polar angle)

ΦGO =
[
φ0 − Δφ

2
, φ0 +

Δφ

2

]
. (1)

In Sect. 2.3, we translate the decision diagram of a fully
trained IHP to a (non-reciprocal) interaction potential,
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Fig. 2 Interaction of the IHP with the bath ABPs. The
ABPs (top left) move according to Eqs. (2) and (3) with
constant self-propulsion velocity v0 in the direction indi-
cated by their instantaneous orientational angle φi, which
is subject to rotational Brownian motion. In addition, chi-
ral ABPs (cABPs) experience an internal torque resulting
in a constant circular frequency ω. The fully trained IHP
(bottom left) is characterised by the decision diagram, indi-
cating the values of φi at which it chooses the actions GO or
NO GO, compare Fig. 1. This internal memory is quantified
by the GO angle Δφ, denoting the probability that a cer-
tain travel partner is chosen, and the anticipation angle φ0,
indicating the mean orientation of the chosen travel part-
ner. Hence, a GO decision is made if φi ∈ ΦGO, as defined
in Eq. (1). Based on this decision diagram, we consider two
models for the IHP motion. The first model is the Q-learning
IHP, which shares the path of the chosen ABP according
to Eq. (4) and is used for training. As a second model, we
transfer the acquired knowledge to the potential IHP, which
has its own equation of motion (8) and is attracted to all
favourable bath particles within range. The corresponding
force is generated by the non-reciprocal interaction potential
V (r, φi) plotted on the right

which only generates a force on the IHP towards an
ABP if φi ∈ ΦGO. Both IHP models are summarised
and compared in Sect. 2.4.

2.1 Active Brownian particles (ABPs)

We consider a bath of N non-interacting ABPs (top
left drawing in Fig. 2), labelled as i = 1, . . . , N , in
a periodic square simulation box with side lengths L,
where the bath density is defined as ρ = N/L2. These
bath particles move at a constant self-propulsion veloc-
ity v0 in the direction of their orientation vector ui(t) =
(cos(φi(t)), sin(φi(t)) in polar coordinates. The orienta-
tion angles φi are defined such that φi = 0 corresponds
to motion in the preferred travel direction of the IHP,
as drawn in Fig. 1. They change over time due to rota-
tional diffusion characterised by Brownian white noise
ξi with 〈ξi(t)〉 = 0 and 〈ξi(t)ξj(t′)〉 = 2δijDrδ(t − t′),
where Dr is the rotational diffusion constant. Neglect-
ing translational diffusion, the equations of motion for
the ABPs’ centre-of-mass ri(t) read

ṙi(t) = v0ui(t). (2)

In addition, we consider the angular dynamics

φ̇i(t) = ξi + ω (3)

including a constant circular frequency ω, which leads
to ABPs that have the tendency swim on circular tra-
jectories. We use these chiral active Brownian particles
(cABPs) to investigate the learning behaviour of the
IHP in different environments.

The equations of motion (2) and (3) are integrated,
using a forward Euler–Maruyama method with a finite
time step Δt. Specifically, we discuss results upon vary-
ing the rotational diffusivity Dr, which sets the persis-
tence time τ = D−1

r and length lp = v0
Dr

of an ABP
(with ω = 0), and the additional circular frequency ω
of a cABP, while keeping the self-propulsion velocity v0
fixed.

2.2 Q-learning IHP

The IHP (bottom left drawing in Fig. 2) cannot move
through self-propulsion. Its only means of transporta-
tion is to attach to the nearest ABP. To mimic real-
istic behaviour, only bath particles within a certain
perception range, indicated by the scan radius Rs, can
be considered and the IHP requires a perception time
τQ before being able to make a new decision. In more
detail, the IHP makes its (n + 1)th decision at time
t = nτQ with n ≥ 0. If there are potential travel part-
ners within the scan radius Rs, it picks the nearest one.
Further, if this selected ABP has a favourable orienta-
tion, the IHP will share its path for a time span of at
least τQ (GO). Otherwise, the IHP will rest at its cur-
rent position and wait for a time span of τQ until the
next decision can be made (NO GO). Note that this
also applies to a NO GO decision causing the IHP to
leave its current travel partner.

We thus model the time evolution of the IHP posi-
tion r(t), which starts at r(0) = 0, separately for each
perception time span nτQ < t ≤ (n+1)τQ between two
decisions according to

r(t) =

{
ri(t) , if (φi(nτQ)∈ΦGO & |r(nτQ)−ri(nτQ)|≤Rs)

r(nτQ) , else
,

i = arg min
j

|r(nτQ) − rj(nτQ)| , (4)

where i labels the ABP closest to the IHP. The set ΦGO

of favourable orientational angles, as given in Eq. (1),
follows from the learning process. These equations of
motion are universal to the IHP, while only the basis of
decision, encoded in ΦGO, evolves while learning.

2.2.1 Learning algorithm

In order to enable navigation in the environment of
randomly distributed ABPs, a tabular Q-learning algo-
rithm is used to train the IHP [51,52]. We thus define an
action space and a state space for this agent. The action

123



    1 Page 4 of 14 Eur. Phys. J. E            (2025) 48:1 

space holds all possible actions ν ∈ {0, 1} performed by
the IHP, meaning sticking to an ABP (GO) if ν = 1 or
not sticking to an ABP (NO GO) if ν = 0. On the other
hand, the state space is given by all polar angles, i.e.
the instantaneous travel direction of the selected ABP,
such that the state μ ∈ {1, 2, . . . , 360} labels 360 dis-
crete intervals, which provide a sufficiently fine numer-
ical resolution for the parameters considered here. This
results in a 360×2 matrix Qμν , whose rows represent
the 360 states, with each state hosting two actions, rep-
resented by the columns. The Q-matrix holds the infor-
mation collected during the learning process and serves
as a basis of decision-making. The resulting decision
amounts to performing the action

Aμ = arg max
ν

Qμν ∈ {0, 1} (5)

in the respective state μ that has the highest value Qμν .
In case of equal values, Qμ0 = Qμ1, a random action is
performed. If no ABP is within reach, no state can be
defined and the agent rests until the next decision (no
learning will occur in this step).

A single training cycle consists of 1000 episodes. One
episode ends once the IHP reaches the top or bottom
of the simulation box of fixed length L or when a max-
imum time Tmax = 6 · 104τQ is reached. The Q-matrix
is initialised with zeros. As such, the agent mainly per-
forms random actions due to their equal weight. This
reflects the lack of experience in the early stages of the
learning process. An independent probability ε that the
IHP decides randomly decreases linearly from one to
zero with increasing number of episodes. This leaves a
probability of 1−ε to actively decide according to what
the agent has learned so far, i.e. through Eq. (5) evalu-
ated for the current values of Qμν . This is to favour an
exploratory approach in the beginning and an exploita-
tive approach in the final stages of the training.

The entries Qμν of the Q-matrix are modified with
rewards or punishments. Specifically, after the agent has
performed action ν in its old state μ, learning progresses
according to the update formula [50]

Qnew
μν = (1 − α)Qμν + α(R + γ max

λ
(Qμ′λ)) (6)

which shall improve the estimate of how likely it is
that this action in that state will lead to rewards in
the future. Specifically, each decision eventually leaves
the agent in a new state μ′ after the perception time
τQ, when a new decision has to be made. Depending on
the value maxλ(Qμ′λ), corresponding to the preferred
action in this new state, there will be a modification
on Qnew

μν , as controlled by the discount factor γ = 0.9.
This hyperparameter thus determines how much the
values of the different states influence each other dur-
ing a learning episode. Moreover, R provides a global
reward (or punishment) when the agent reaches its goal
at the top (or hits the bottom), such that a final update
is made at the end of each episode, where we use

R(y) =

⎧⎨
⎩

+100 , if y ≥ L/2
−100 , if y ≤ L/2
0 else

. (7)

Finally, the learning rate α = 0.01 regulates how much
of the new information is used in updating Qμν , such
that the algorithm can converge properly.

2.2.2 Repeated training

To get useful results that will serve for our later analysis
of the IHP’s motion, the full learning procedure is com-
pleted only after repeating the training cycle described
in Sect. 2.2.1. We thus consider the IHP to be fully
trained after having passed through 303 independent
training cycles, each consisting of 1000 episodes. Fig-
ure 3 displays this progress from the first learning steps
to the final strategy, encoded in the Q-matrix.

In Fig. 3a, we show three exemplary trajectories
throughout the training in a bath of ABPs (with ω = 0),
demonstrating how the strategy gradually improves.
Initially, the observed behaviour is governed by random
actions, resulting in a regular change of travel part-
ner and travel direction. Halfway through the training,
every second decision is, on average, made on the basis
of the Q-matrix and the IHP increasingly benefits from
the persistent ABP motion. Eventually, it has learned
to pick only upward moving travel partners and stay
with them for up to about one persistence length. The
resulting trajectory displays no downward movement at
all.

The main outcome of this learning algorithm is
encoded in the Q-matrix, which holds values for both
actions in each state, where the highest value in each
state defines the action, GO or NO GO, according to
Eq. (5). Hence, the content of the matrix elements can
be condensed into a binary decision diagram only indi-
cating the chosen action in each state. This intrinsic
memory of the IHP is represented by a pie chart, as
illustrated in Fig. 1. However, due to our randomised
setup, the final Q-matrix slightly differs when repeat-
ing the training of the IHP. It is also possible to end up
with a decision diagram displaying alternating actions
for neighbouring states, rather than only two regions
with a sharp distinction of GO and NO GO. This is
because the matrix elements for the two actions can be
quite similar, in particular for travel angles correspond-
ing to sideways ABP movement. To obtain clean deci-
sion diagrams, we determine the final GO probability
that the IHP will attach to an ABP with orientation
φi from the relative frequency hGO(φi) that the IHP
makes a GO decision at this angle after having com-
pleted 303 independent training cycles. As exemplified
by the histograms in Fig. 3b, this pointwise probability
changes quite smoothly with the ABP orientation. We
then determine the decision diagram of the fully trained
IHP by associating all angles with hGO(φi) ≥ 0.5 and
hGO(φi) < 0.5 to GO and NO GO, respectively. This
final result can then directly be translated into the set
ΦGO of GO angles from Eq. (1). As the average decision
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Fig. 3 Full learning process of the IHP. a Trajectories
(green lines) over the course of one training cycle, consist-
ing of 1000 episodes (see labels), where the IHP succes-
sively learns to navigate in a bath of ABPs with density
ρ = 0.6/R2

s and rotational diffusivity Dr = 6π2 · 10−3/τQ.
The goal is to reach the top, i.e. moving half a box length
L/2 = 25Rs in positive y-direction. As in Fig. 1, the red
dots indicate the choice of action NO GO followed by a
change of travel partner. A typical trajectory of a bath par-
ticle with persistence length lp = v0/Dr is depicted in cyan.
b Obtaining the final decision rule after repeating the com-
plete training cycle for 303 times. For each state, i.e. for each
orientation φi of a bath particle, we define the (pointwise)

GO probability hGO(φi) as the relative frequency of GO
actions, sampled from all training cycles (left). The most
likely action GO (green or light grey) or NO GO (red or dark
grey) can be directly inferred from the value hGO(φi) ≥ 0.5
or hGO(φi) < 0.5, which defines the decision diagram of the
fully trained IHP (right). As annotated, the anticipation
angle φ0 and the GO angle Δφ from Eq. (1) can be directly
identified in both representations. c According IHP and typ-
ical bath particle trajectories (top) and decision diagram of
the fully trained IHP for a bath of cABPs, which addition-
ally have a nonzero circular frequency ω = −36π/(100τQ)
in their angular dynamics

value for the APB bath is typically symmetric around
φi = 0, there is no anticipation angle, φ0 = 0, while
the GO angle Δφ spans a range of favourable travel
directions typically pointing upwards.

The flexibility of the learning procedure is verified
by considering ω �= 0, i.e. a bath of cABPs. Also in
this case, the trajectory of the IHP at the end of its
training is directed upwards, as shown in the top of
Fig. 3c. Since the characteristic radius of the circular
trajectories is much smaller than the persistence length
of the straight ABPs, this directed hitchhiking requires
much more proactive intelligent decision-making and an
appropriate timing to change the travel partner. This
results in a strategy adjusted to the dynamics of the
travel partner, as reflected by the nonzero anticipa-
tion angle φ0 in the decision diagram at the bottom
of Fig. 3c. In particular, φ0 typically has the opposite
sign as the circular frequency ω of the bath particles and
thus conveniently quantifies how much the IHP needs
to anticipate future changes in travel direction.

2.3 Potential IHP

The motion (4) of the Q-learning IHP, as introduced
in Sect. 2.2, follows a simple identification rule, namely
travelling along with a bath ABP or not. Its decision
strategy derived from the training scheme in Fig. 3 is
purely characterised by whether the orientation of the
closest bath particle lies within a certain angular inter-
val. This behaviour can be imitated by purely physical
interaction via a relatively simple attractive potential.
To this end, we introduce the potential IHP as an alter-
native model by translating the GO action to an attrac-
tive force which pushes it towards all sufficiently close
ABPs with a promising travel direction. These direc-
tions are inferred from the decision diagram obtained
in the previously completed learning processes of the
Q-learning IHP. Again, the motion of the bath ABPs is
not affected by the presence of the potential IHP, which
means that we introduce a non-reciprocal hitchhiking
interaction.
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Specifically, the potential IHP moves according to the
overdamped equation of motion

ṙ(t) = −γ−1
N∑

i=1

∇V (|r − ri|, φi) (8)

induced by each nearby bath particle, where γ is
the friction coefficient. The orientation dependence of
the non-reciprocal hitchhiking potential V (r, φ) follows
from the binary distinction

V (r, φ) =
{

V0(r) , φ ∈ ΦGO

0 , φ /∈ ΦGO
, (9)

selecting all favourable travel directions ΦGO of a bath
particle, given by Eq. (1). Moreover, the radial part
within V (r, φ) is described by

V0(r) =
{

5γv0Rs

(
1 − Rs

r

)
, Rmin ≤ r ≤ Rs

0 , else
. (10)

To prevent a divergence of the force, we introduce a
lower cut-off to the potential, given by the minimal
hitchhiking distance Rmin = Rs/20, while the upper
perception limit is given again by the scan radius Rs.
This hitchhiking potential is shown in Fig. 2 together
with an illustration of the IHP’s decision diagram. In
practice, it can happen that the potential IHP over-
takes the ABP when updating the position according
to Eq. (8) because of the finite time step Δt in our
simulations. To prevent this discretisation artefact, the
resulting displacement vector is renormalised to the dis-
tance between potential IHP and ABP whenever it is
larger (while the direction of the displacement remains
the same).

2.4 Model overview

Overall, we devise two different models for an intelligent
hitchhiking particle (IHP), each describing individual
hitchhiking capabilities.

The Q-learning IHP, on the one hand, is limited by
its perception, as it can only make one cognitive oper-
ation of a certain complexity at discrete time steps. It
also only focuses on a single bath particle, but, if this
one turns out to be a suitable hitchhiking partner, will
always rigorously follow its path, irrespective of the ini-
tial distance (within the scan radius Rs). This motion
will be maintained until the next decision can be made
after the perception time τQ, even if the trajectory takes
an unfavourable direction before. This possibility must
be appropriately anticipated in the learning process.

The potential IHP, on the other hand, is contin-
uously pulled by all suitable travel partners (within
range) at the same time instead of reacting by instan-
taneously attaching to a certain bath particle. More-
over, it does not feature a discrete perception time,
which brings about a strength and a weakness at the

Fig. 4 Learning results in a bath of ABPs. The GO angle
Δφ of a fully trained IHP (compare Fig. 3) is shown as a
function of the rotational diffusivity Dr of the bath particles.
We roughly observe a linear trend except for very small Dr

(highly persistent ABPs), where the learning environment is
too small compared to the persistence length. The dashed
line thus indicates a fit to a + bDr + c/Dr as a guide to
the eye. The anticipation angle φ0 = 0 is zero in all cases,
as the circular frequency ω = 0 vanishes for this bath. We
also show the three decision diagrams corresponding to the
values of Dr (coloured points) used in our later plots

same time. While it is less likely to be manoeuvred
into an unfavourable travel direction during hitchhik-
ing, detaching too early may increase the time it has to
wait at rest. Keeping in mind that the decision diagram
of the potential IHP is obtained from training the Q-
learning IHP, it is not obvious which model shows the
better performance in how far these features are advan-
tageous or disadvantageous.

In the following sections, we use τQ and Rs as time
and length scales, respectively and consider a fixed self-
propulsion velocity v0 = 3Rs/(2τQ) of the bath parti-
cles. The numerical time step is given as Δt = τQ/6
and the length of the simulation box is L = 25Rs. The
rotational diffusivity Dr and the circular frequency ω
of the bath particles are variable, while learning takes
place at a fixed bath density ρ = 0.6/R2

s , since the
choice of ρ does not affect the learning results. When
evaluating the performance of the fully trained IHP, we
also investigate the effect of the density, as the result-
ing change in waiting time is crucial for calculating the
overall average hitchhiking velocity.

3 Hitchhiking behaviour

Equipped with the decision diagram obtained via Q-
learning, the IHP is capable of navigating in different
types of baths to persistently move towards its goal (in
our case in positive y-direction). Below, we discuss its
physical properties, depending on different models and
bath parameters. Specifically, we discuss in Sect. 3.1
how the decision diagrams depend on the persistence
time and circular frequency of the bath particles, before
analysing the Q-learning IHP’s mean-squared displace-
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ment in Sect. 3.2. Finally, we compare the motion to
the potential IHP in Sect. 3.3.

3.1 Learning results

At the end of its training, the IHP has learned to reach
its goal by intelligently switching travel partners. As
summarised in Fig. 3, the fully trained IHP attaches
to an ABP with a promising orientation and holds
on until the polar travel angle falls outside a certain
range characterised by the anticipation angle φ0 and
the GO angle Δφ. We thus observe persistent trajecto-
ries closely resembling that of the bath particles, while
a change of travel partner is observed as soon as the
trajectory tends to deviate too much from the intended
travel route. In a bath of cABPs, such a change occurs
more frequently at the same Dr, as the circular motion
reduces the persistence and needs to be anticipated by
the IHP. Hence, the IHP’s trajectory is characterised by
sequential semicircles and its decision diagram is asym-
metric due to a nonzero anticipation angle. Below, we
quantify these learning results in more detail.

Let us first focus on a bath of ABPs with vanishing
circular frequency ω = 0 and investigate the depen-
dence of the GO angle Δφ on the rotational diffusiv-
ity Dr or, equivalently, on the persistence time τ =
1/Dr. As shown in Fig. 4, Δφ increases with increas-
ing Dr, which indicates that the training of the IHP
has increased its awareness towards the choice of travel
partner by considering a smaller range of favourable
angles when the bath particles become more persistent.
In this case, the learned strategy to accept a longer
waiting time for a bath particle with an optimal travel
direction will naturally pay off in the long run. This
trend can be intuitively explained by considering the
consequences of choosing a travel partner whose ori-
entation initially points sidewards. For a highly per-
sistent bath, the travel direction will remain the same
for an extended amount of time, such that the IHP

has to stick to its decision without getting an actual
benefit, while better alternatives could have been avail-
able in the mean time. For lower bath persistence,
the travel direction randomises earlier, becoming either
more favourable or triggering a NO GO decision allow-
ing to search for a better partner. Over a large range of
Dr, the change of GO angle is well described by a linear
relation. A significant deviation from this trend is only
observed in the extremely persistent case (small Dr),
such that lp 	 L, where a change of a travel partner is
almost never required during training.

To underline the flexibility of our Q-learning pro-
cedure, we now consider a bath of cABPs, for which
we investigate the influence of the circular frequency
ω on the decision diagram in Fig. 5. As shown in
Fig. 5a, the GO angle Δφ increases approximately lin-
early for increasing ω, since the circular trajectories of
the bath particles lead to less persistent motion (com-
pare Fig. 3c). This observation is thus analogous to that
in Fig. 4 for increasing the rotational diffusivity Dr,
as discussed in the previous paragraph. Moreover, the
slope of Δφ as a function of ω remains nearly indepen-
dent of Dr, such that we expect the effect of varying Dr

for cABPs to be the same as for ABPs. As in Fig. 4,
the only exception is for an extremely persistent bath
(Dr = 6π2 · 10−13τ−1

Q and ω = 0).
Crucially, the circular frequency of the bath cABPs

also challenges the IHP to anticipate the circular move-
ment. This is reflected in our learning results, shown
in Fig. 5b, by the increase of the absolute anticipation
angle |φ0| with increasing absolute circular frequency
|ω|, while the sign is the opposite. In other words,
the IHP preferably selects travel partners whose ori-
entations are not instantaneously pointing towards the
goal, but will turn accordingly during the hike. Quan-
titatively, the linear fit φ0 ≈ −0.64ωτQ (measured in
radians) tells us that the magnitude of the anticipation
angle corresponds to about half the angle a bath parti-
cle turns during one perception time τQ. This farsighted

Fig. 5 Learning results in a bath of cABPs. a The GO
angle Δφ and b the anticipation angle φ0 of a fully trained
IHP (compare Fig. 3) are shown as functions of the circular
frequency ω of the bath particles. We consider two rotational
diffusivities Dr following the colour code used in Fig. 4 for

achiral ABPs (corresponding to the data for ω = 0). The
dashed lines indicate linear fits to guide the eye (the red
point for ω = 0 was excluded for this purpose). We also
show the decision diagram corresponding to the parameters
Dr = 6π2 · 10−3τ−1

Q and ω = 36π · 10−2τ−1
Q used in Fig. 7
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Fig. 6 Persistent motion of the Q-learning IHP. We show
the MSD for different bath densities ρ and rotational diffu-
sivities Dr (solid lines with colours given in the respective
legends), where each curve is averaged over 1000 simulation
runs. The numerical results are compared to a the MSD of

a single bath ABP (dashed lines), where the vertical dot-
ted lines indicate the persistence times τ = 1/Dr, and b the
theoretical predictions derived in appendix A, i.e. the short-
time approximation MSD0 (dotted lines) and the long-time
asymptotic behaviour MSD∞ (dashed lines)

anticipation required for high circular frequencies is
thus learned successfully. We also find that the rota-
tional diffusion barely affects the anticipation angle, as
these orientational fluctuations average out while learn-
ing to cope with this deterministic effect.

As learning only takes place if a bath particle is
within range, such that a certain action can be con-
sciously chosen, the final decision diagrams are inde-
pendent of the bath density ρ. Thus, the only effect
of changing ρ, so far, is on the slope of the learning
curve. Our chosen density for the learning process yields
an optimal balance between the expected number of
time steps required to complete the training (which
decreases for larger ρ) and the computational cost to
evaluate each time step (which increases for larger ρ).
The performance of a fully trained IHP, however, very
well depends on the bath density, as we examine below.

3.2 Ballistic motion of the IHP

To illustrate the IHP’s travel characteristics, we exam-
ine its mean-squared displacement (MSD)

MSD :=
〈|r(t) − r(0)|2〉 (11)

over the course of time. As discussed in appendix A
(and described in the theory outlined below), the
IHP can actually be well described as performing a
drift motion with a time-dependent hitchhiking veloc-
ity vH(t). Nevertheless, we consider the MSD instead
of the simpler mean displacement to better assess the
IHP’s performance in comparison to the bath ABPs as
a reference.

As shown in Fig. 6, the IHP has successfully learned
to enable directed motion through hitchhiking, which
can be seen from the ballistic long-time behaviour.
Specifically, for all parameters (bath density and rota-
tional diffusivity), the IHP will eventually outperform
a single bath ABP, whose motion becomes diffusive

at times t > τ due to its finite persistence time τ ,
compare Fig. 6a. Upon closer inspection, we observe
up to four different dynamical regimes, starting bal-
listically at very short times, followed by intermedi-
ate super-ballistic and sub-ballistic behaviour, until the
IHP eventually enters its final ballistic state with a
larger average velocity than in the first ballistic regime.
The most important control parameter for this dynami-
cal behaviour and also the overall hitchhiking efficiency
is the bath density. In general, the MSD is always larger
when the density is higher, as the average waiting time
for a new travel partner decreases. This effect is nearly
independent of the bath particles’ rotational diffusivity
at short times. The long-time performance, however, is
crucially reduced if the bath is only weakly persistent
and its density is low, because of the combined effect of
the IHP leaving its travel partner more often and the
longer waiting time for a new one. In contrast, hitch-
hiking in a dilute but persistent bath is only slightly
less efficient in the long run, while bath persistence is
generally not a relevant factor in a dense bath, as there
is practically always an ABP within reach.

Both the qualitative behaviour and the magnitude of
the MSD can be quantitatively explained via explicit
considerations of the probability that a favourable
travel partner is available to the IHP at time t. Our
theoretical treatment is detailed in appendix A and out-
lined below. Let us first recall from Eq. (4) that the IHP
will generally either remain at rest or travel with veloc-
ity v0. Therefore, in the early stages, the IHP needs to
wait to find its initial travel partner before being able to
move at all. The first regime is thus at t ≤ τQ, for which
we observe ballistic motion with the average velocity
p(0)v0. Given N = ρL2 bath particles in a periodic box
of side length L, the required probability

p(0) =

(
1 −

(
1 − R2

sπ

L2

)ρL2)
Δφ

2π
(12)
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Fig. 7 Q-learning IHP versus potential IHP. We show the MSD for different bath densities ρ, rotational diffusivities Dr

and circular frequencies (as labelled) for the Q-learning IHP (solid lines) and the potential IHP (dashed lines). Each curve
is averaged over 1000 simulation runs

to find a suitable travel partner in the IHP’s obser-
vation window R2

sπ instantaneously at t = 0 can be
exactly derived from the binomial distribution and the
fraction Δφ/(2π) of GO angles. If none is found, the
IHP has a new chance after every passing of its percep-
tion time τQ, which allows us to construct the cumula-
tive probability p(t) to having found the initial travel
partner before time t. As, by its nature, p(t) increases
as a function of time, the average hitchhiking velocity
vH(t) = p(t)v0 is subject to an effective acceleration,
such that the MSD becomes super-ballistic in the sec-
ond regime τQ < t � τ . As the orientation of an ABP
randomises after their characteristic persistence time τ ,
the IHP eventually needs to let go its first companion.
This may result in an intermediate deceleration on aver-
age, i.e. an effective sub-ballistic MSD regime around
t ≈ τ (whether this regime is visible will depend on
the form of p(t), which is mainly determined by ρ).
Hence, our prediction p(t) provides an upper bound for
the probability that the IHP currently has a suitable
travel partner at time t, which is the focal point of our
theoretical description. To account for the letting go
and the subsequent quest for a new travel partner, we
notice that, after this procedure has been repeated sev-
eral times, a good estimate for the long-time hitchhiking
velocity in the final ballistic regime for t 	 τ can be
obtained by averaging p(t)v0 over one persistence time
of the bath particles. Clearly, this predicted average is
larger than p(0)v0 in the first ballistic regime. As indi-
cated in Fig. 6b, the theoretical predictions based on
the upper bound and the long-time behaviour provide
an excellent representation of the simulated MSD in the
corresponding time regimes.

3.3 Comparison to the potential model

Having understood the MSD of the Q-learning IHP, we
now turn to the potential IHP and compare the MSD
from both models in Fig. 7. In general, we find that

the potential IHP has a higher mobility at short times,
while the displacement in the initial regime is rather
diffusive than ballistic. In later stages, the qualitative
behaviour of both models is similar, i.e. the motion is
effectively accelerated due to the increasing hitchhiking
probability and eventually becomes ballistic, reflecting
a successful hitchhiking strategy with persistent tra-
jectories. As the journey proceeds, the Q-learning IHP
catches up and prevails over the potential IHP in the
long run for most of the parameters.

Recalling the comparison in Sect. 2.4, we identify two
main reasons for the differences between the two models
observed in the MSD. First, as detailed in appendix B,
the probability p(0) to find a suitable (initial or new)
travel partner is always larger in the potential model, as
the Q-learning IHP can only focus on a single bath par-
ticle. This explains the initial advantage of the poten-
tial IHP. Second, while the Q-learning IHP can only
make discrete decisions separated by the perception
time τQ, a suitable bath particle always interacts with
the potential IHP, which leads to a continuous update of
the instantaneous hitchhiking velocity −γ−1∇V . More
specifically, the potential IHP gets pulled towards the
current position of the ABP, which itself will move with
v0 in a possibly different direction. Assuming that this
ABP will still have a favourable orientation, there are
three possible scenarios for the IHP motion in the next
time step: (i) the pulling force was not directed prop-
erly, such that the ABP is out of range and the IHP
needs to wait in rest for another travel partner; (ii) its
distance to the ABP has changed and the next pull
results in a different hitchhiking velocity, or (iii) the
IHP ends up within a distance smaller than Rmin and
thus does not need a kick to remain attached to the
ABP, such that it remains at rest to be kicked again
in the next time step. The more random nature of the
individual hitchhiking velocity (ii,iii) could be respon-
sible for the rather diffusive motion in the initial hitch-
hiking phase. Moreover, the higher susceptibility of the
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potential IHP to let go of its travel partner prematurely
explains the catching up of the Q-learning IHP. A spe-
cific scenario which could trigger this situation (i) is due
to the joint attraction of several suitable travel partners
pushing the IHP in an average direction in between such
that it will lose connection to all of them. Such a pre-
mature detachment (compared to the Q-learning IHP)
from a single travel partner can also be caused by the
condition φi ∈ ΦGO being evaluated at each time step
(instead of each τQ).

In how far the initial advantages of the potential
model will remain in the long run depends on different
parameters, as compared in Fig. 7. We see that the rela-
tive long-time performance, i.e. the final average hitch-
hiking velocity, of the Q-learning IHP surpasses that of
the potential IHP for a more persistent and dilute bath.
In contrast, the premature detachment of the potential
IHP is less disadvantageous both in a bath with low per-
sistence, where the travel partner needs to be changed
more frequently anyway (compare the two trajectories
in Fig. 3a and c), and in a dense bath, where many suit-
able new travel partners are present. To better under-
stand the crucial role of density, let us mimic the effects
described above by assuming a smaller effective scan
radius of the potential IHP (mimicking the effectively
looser connection). Following appendix B, the probabil-
ity p(0) to find a suitable travel partner is then, indeed,
smaller for the potential IHP in the limit of a dilute
bath, while we find p(0) → 1 for very high densities,
irrespective of the (effective) scan radius. In contrast,
the limit p(0) → Δφ/2π of Eq. (12) is set solely by the
GO angle of the Q-learning IHP, as its focus is limited
to a single bath particle.

Finally, let us recall that the Q-learning IHP has been
explicitly trained performing its characteristic dynam-
ics, while the potential IHP model requires a transfer of
this knowledge into a more realistic physical model. In
this light, the performance of the latter is quite remark-
able, in particular in a bath of cABPs, where its MSD
is larger for all times.

4 Conclusions

In conclusion, we have modelled an intelligent hitch-
hiking particle (IHP) that gets transported by attach-
ing to and detaching from neighbouring active parti-
cles. It learns the rules for optimal transport by a rein-
forcement learning algorithm, demonstrating that arti-
ficial intelligence allows to efficiently generate directed
motion from an undirected bath. We have developed a
compact analytical framework for describing the drift
velocity of the IHP and verified by numerical explo-
ration of its mean-squared displacement (MSD) that
the persistence of this motion exceeds that of the bath
particles for long times. This ratchet-like behaviour [53–
55] of the IHP is reminiscent of the motility-induced
drift motion of anisotropic tracers surrounded by ABPs
[56–59].

The learned strategy of the IHP depends on three fac-
tors. First, the overall bath persistence is reflected by
the GO angle. If the bath is highly persistent (small
rotational diffusivity and small circular frequency),
then it is advantageous to be more selective (small GO
angle), as the presumed long travel time with a cho-
sen partner is usually larger than the increase in wait-
ing time. For a weakly persistent bath, it is better to
keep the waiting time smaller. This requires the IHP
to also take a leap of faith if the travel direction is
not ideal (larger GO angle), given the possibility to opt
out again with the next decision. Second, the circular
motion inherent of cABPs is reflected by the anticipa-
tion angle, opposing the circular frequency. Third, a
crucial ingredient of our model is the perception time
of the Q-learning IHP, which characterises its cogni-
tive limitations. An increase of the perception time at
fixed bath parameters requires larger GO and anticipa-
tion angles and results in an overall lower performance.
These effects can be directly inferred from the scaling
implied in Figs. 4, 5 and 6, respectively.

Our minimal model assumes a non-reciprocal cou-
pling between the IHP and the bath particles. While
effective non-reciprocal interactions are ubiquitous in
nature and are known to generate intriguing non-
equilibrium behaviour [60–65], it would also be inter-
esting to model and investigate the reciprocal effects
exerted by the IHP on the bath for various reasons.
First, such a coupling can also lead to unexpected joint
motion of the composite particle. For example, it has
been shown that an ABP reacts to its passive cargo
by changing its typical dynamics in an activity gradi-
ent [66,67]. Second, alternative types of models could
describe the IHP as a carrier vesicle [68–70], which
learns to selectively uptake and release active particles
to get a directional net push in its interior. Third, an
intriguing philosophical perspective would be to assess
the thermodynamic role played by the IHP. One might
argue that an IHP actually extracting its required work
from the active bath effectively learns how to act as a
Maxwell’s demon.

Our model can be generalised in various other ways
for future studies. One important step to go beyond
the idealised systems considered here is to include more
realistic bath particles interacting with each other. The
need for anticipating the emerging collective behaviour,
which can lead to complex non-equilibrium patterns
such as clusters [71] and vortexes [72], would challenge
simple learning strategies. One interesting application
is the possible transfer of the acquired knowledge to
macroscopic bodies such as robots [73,74], which shall
perform comparable navigational tasks. As such, an
important aspect that should be taken into account is
the role of inertia [41], which brings about a memory
effect of the past trajectories and might also require
more sophisticated learning tools.
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Supplementary information

An animation of the agent’s hitchhiking behaviour in a
bath populated by cABPs is provided as a supplemen-
tary video.

4.1 Supplementary video

Below is the link to the electronic supplementary mate-
rial. Supplementary file 1 (mp4 7858 KB).

Supplementary information The online version con-
tains supplementary material available at https://doi.org/
10.1140/epje/s10189-024-00465-0.
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Appendix A Theory for the MSD of the
Q-learning IHP

While the MSD of the bath particles is exactly known [35],
there are also specific rules for hitchhiking. We can thus
provide close analytical estimates for the MSD of the IHP,
where we focus on the Q-learning IHP in a bath of straightly
swimming ABPs. Our considerations rest on two pillars.
First, if the IHP has a suitable travel partner, its motion
alongside the persistent trajectory of this ABP also occurs
with self-propulsion velocity v0 and is ballistic. Second, as
the IHP may also be at rest, the effective hitchhiking veloc-
ity vH(t) becomes an average quantity which depends on
time-dependent hitchhiking probability pH(t), i.e. the prob-
ability that the IHP is currently attached to an ABP. Such

an ABP is chosen for hitchhiking if (i) it is within scan
range Rs (at a time given by a multiple of τQ) when a deci-
sion is made, (ii) it is closest to the IHP such that is actually
selected as a potential vessel (in case more than one ABPs
are within scan range), and (iii) its orientation φi ∈ ΦGO is
considered favourable. Hence, the bath density ρ is a cru-
cial control parameter. Moreover, after the IHP has found a
suitable ABP, conditions (i) and (ii) will be automatically
fulfilled by the same ABP when the next decision is made,
while condition (iii) needs to be evaluated again. Because of
the possible choice of the IHP to leave a travel partner that
runs out of persistence, we eventually also need to take into
account the persistence time τ of the bath particles, which
will indirectly influence the hitchhiking probability pH(t).

If we know the hitchhiking probability pH(t), we can
determine the effective hitchhiking velocity

vH(t) = pH(t)v0 (A1)

right away, such that the resulting displacement follows as

x(t) =

t∫
0

vH(t′)dt′ . (A2)

As a directed IHP motion is ensured by its training and
the resulting selective choice of travel partners, we conve-
niently assume here an effective one-dimensional displace-
ment, which directly yields the desired MSD= x2(t) by
squaring the result. In what follows, we discuss the form
of pH(t) in three steps.

As a first step, we want to calculate the probability p(t)
that the IHP has found its first travel partner before or at
time t as an upper bound to pH(t). The first decision is made
at t = 0, where the initial probability p(0) can be stated as
there is at least one ABP within range and the selected ABP
has a favourable orientation. In an infinite non-interacting
bath of density ρ, the probability that k particles are found
within the area R2

sπ (surrounding the IHP) is given by the
Poisson distribution

Pk(λ) =
λk

k!
e−λ , (A3)

where λ = ρR2
sπ represents the average number of particles.

Together with the GO angle Δφ in the definition of ΦGO

from Eq. (1), we find the required initial probability as

p(0) =
(
1 − P0(ρR2

sπ)
) Δφ

2π
=

(
1 − e−ρR2

s π
) Δφ

2π
. (A4)

For the sake of comparing predictions based on p(0) to our
simulation results, we should take into account the finite
periodic simulation box of length L, such that the binomial
distribution should be used instead of the Poisson distribu-
tion. Accordingly, the result analogous to Eq. (A4) is given
by Eq. (12), as stated and discussed in the main text and
shown in Fig. 6b. For sufficiently large L, both expressions
become equivalent. Irrespective of how p(0) is specified, we
can obtain the probability

p(n) =

n∑
m=0

(1 − p(0))m p(0) (A5)

that the journey of the IHP has started no later than
with the n + 1st decision by cumulating the probabilities
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(1 − p(0))m p(0) that exactly the m + 1st decision results in
choosing a travel partner for the first time. Recalling that
these decisions are made at t = nτQ with integers n ≥ 0,
we obtain the desired probability p(t) from Eq. (A5) by set-
ting n = �t/τQ�, where the brackets evaluate to the nearest
integer smaller than or equal to the argument.

As a second step, we notice that p(t) is not exactly the
hitchhiking probability pH(t) required in Eq. (A1), because
it does not account for the need of the IHP to eventually
leave its initial (or current) travel partner and wait again
until the next suitable ABP is chosen to continue the trip
in the desired direction. Instead, we see from the geomet-
ric series in Eq. (A5) that p(t) → 1 for large times, which
merely describes that the IHP will always find a suitable
travel partner if it just waits long enough. While it is indeed
possible to derive an explicit formula for pH(t), this result
will be impracticable for evaluation and we only briefly state
the basic idea. The conditional staying probability pS(t−t0)
is that the IHP that has attached to a bath particle at time
t0 will still make a GO decision at time t can be determined
from the Gaussian solution of the angular diffusion process
in Eq. (3) with ω = 0, i.e. when the diffusing angle exceeds
the limits described by ΦGO. The most notable insight of
this exercise is that the relevant change in this probabil-
ity occurs on a time scale given by τ , which we will refer
to below. The appropriate calculation of pH(t) would then
require for an iterative correction of Eq. (A5) by introduc-
ing factors of the form pS(mτQ), accounting for the stay-
ing probability after m decisions, which remains nonzero for
all decisions after first choosing a travel partner. Likewise,
with probability 1 − ps, the following decision must already
account for the possibility of attaching to a new travel part-
ner and so on. This means that a new term of the form of
Eq. (A5) must be added after each two decisions, eventually
leading to an infinite number of sums.

As a third step, we rather seek here for compact expres-
sions to approximate pH(t) only using the available result for
p(t), which certainly captures the correct behaviour in the
early stages of the IHP dynamics. For later times, we utilise
the insight that the wait–GO–NO GO sequence described in
the previous paragraph will roughly repeat itself after a time
span given by τ . Thus, we average our result for p(t) over
one persistence time to estimate long-time limit p̄∞ := pH

the hitchhiking probability as

p̄∞ ≈ 1

τ

τ∫
0

p(t)dt . (A6)

This integral can be expressed as an analytic series by sum-
mation over p(n) Eq. (A5). In summary, we approximate
the overall hitchhiking probability as

pH(t) ≈
{

p(t) , t � τ

p̄∞ , t � τ
(A7)

and, accordingly, the effective hitchhiking velocity vH(t)
using Eq. (A1). These two cases provide an excellent descrip-
tion of the IHP’s MSD in the respective limits. Specifically,
we show in Fig. 6 the short-time approximation

MSD0 =

⎛
⎝v0

t∫
0

p(t′)dt′

⎞
⎠

2

(A8)

and the long-time asymptote

MSD∞ = v2
0 p̄2

∞t2 . (A9)

Appendix B Initial hitchhiking probability
of the potential IHP

To get a feeling for the performance of the potential IHP rel-
ative to the Q-learning IHP, we compare the initial hitchhik-
ing probabilities of both models. For the potential IHP this
probability, which we denote by p̃(0), can be stated as there
is at least one ABP within range and at least one of them
has a favourable orientation. For the reason of obtaining a
compact representation, we work with the Poisson distri-
bution from Eq. (A3), appropriate for a sufficiently large
system. Doing so, we find

p̃(0) = 1 −
∞∑

k=0

Pk(ρR2
sπ)

(
1 − Δφ

2π

)k

= 1 − e−ρR2
s π Δφ

2π

(B10)
as the complement of having each k bath particles within
scan radius, while all of them have an unfavourable orien-
tation. Comparing this result to Eq. (A4), we see that both
expressions have the same low-density limit

p(0) = ρR2
sπ

Δφ

2π
+ O(ρ2) = p̃(0) , (B11)

which explicitly depends on the scan radius Rs. In general,
we see that p̃(0) is larger than p(0), as can be shown explic-
itly from the ratio

p(0)

p̃(0)
= 1 − ρR2

sπ

2

(
1 − Δφ

2π

)
+ O(ρ2) . (B12)

Specifically, taking the high-density limits

lim
ρ→∞

p(0) =
Δφ

2π
< 1 , lim

ρ→∞
p̃(0) = 1 , (B13)

the difference between the two models becomes obvious. As
the presence of one bath particle with favourable orientation
is sufficient for the potential IHP, there surely is a hitch-
hiking possibility in the high-density limit. In contrast, the
Q-learning IHP only has the chance to select a favourable
bath particle with a probability determined by the fraction
of available GO angles, despite the plethora of suitable travel
partners.
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delay of self-propelled particles. Nat. Commun. 9, 5156
(2018)

35. S. van Teeffelen, H. Löwen, Dynamics of a Brownian
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R.E. Goldstein, H. Löwen, J.M. Yeomans, Meso-scale
turbulence in living fluids. Proc. Natl. Acad. Sci.
(PNAS) 109(36), 14308–14313 (2012)

73. Y. Zhao, Y. Chi, Y. Hong, Y. Li, S. Yang, J. Yin, Twist-
ing for soft intelligent autonomous robot in unstructured
environments. Proc. Natl. Acad. Sci. (PNAS) 119(22),
2200265119 (2022)

74. L.M. Kamp, M. Zanaty, A. Zareei, B. Gorissen, R.J.
Wood, K. Bertoldi, Reprogrammable sequencing for
physically intelligent under-actuated robots, (2024).
arXiv Preprint at arXiv:2409.03737

123

http://arxiv.org/abs/2409.03737

	A hitchhiker's guide to active motion
	1 Introduction
	2 Models for an intelligent hitchhiking particle (IHP)
	2.1 Active Brownian particles (ABPs)
	2.2 Q-learning IHP
	2.2.1 Learning algorithm 
	2.2.2 Repeated training

	2.3 Potential IHP
	2.4 Model overview

	3 Hitchhiking behaviour
	3.1 Learning results
	3.2 Ballistic motion of the IHP
	3.3 Comparison to the potential model

	4 Conclusions
	Supplementary information
	4.1 Supplementary video

	Appendix A Theory for the MSD of the Q-learning IHP
	Appendix B Initial hitchhiking probability of the potential IHP
	References
	References


