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ABSTRACT: The Statistical Mechanics description of concentrated col-
loidal suspensions is illustrated by a few recent applications which emphasize
both the analogies and the differences between mesoscopic suspensions and
simple atomic liquids. The aspects which are briefly reviewed in this paper
are phase transitions, the kinetic glass transition, density profiles of suspen-
sions under gravity and phase separation in highly asymmetric hard sphere
mixtures. -

1. INTRODUCTION

The name "colloidal suspensions” covers an extremely wide variety of
physico-chemical systems involving "rmesoscopic” particles ( in the size range
10<0<10% am if ¢ denotes some characteristic diameter ) dispersed in a sus-
pending fluid like water or some organic solvent. Restriction will be made
in the following to rigid, spherical colloidal particles. The main point of the
present lectures will be to show, on the basis of a few examples, that under
smtable conditions, concentrated suspensions of such particles exhibit strong
analogies with simple liquids, despite the very different size and time scales
involved. However these similarities should not conceal some fundamental
differences, notably as far as the dynamics are concerned.

Any ”first principles” Statistical Mechanics description is necessarily based
on a knowledge of the mutual interactions between particles, which are gen-
erally simplified in the framework of simple models, chosen so as to capture
the essential features of interparticle forces. The two universal characteris-
tics of these interactions are linked to the fact that colloids are made up of
10% — 1012 atoms, depending on their size. Hence Born repulsion between
Brownian particles will set in when their mutual distance r approaches their
diameter, whereas the Van der Waals interactions between atoms will add up
to the familiar attractive Hamaker potential vg(r), which decays like 1/75 for
r > o, but diverges at contact according to : '
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where H ~ 10720 J is Hamaker's constant 1'?. This singular attraction
leads to irreversible flocculation ( or coagulation ) of the particles, if no special
care is taken to stabilize the suspension, .

Stabilization may be achieved by ”coating” the colloidal particles to pre-
vent them from touching. There are essentially two methods to stabilize the
suspension. Steric stabilization is achieved by grafting or adsorbing polymer
chains on the surface of the particles; this leads to a repulsion of entropic
origin (originating in the reduction of polymer phase space when two particles
approach), which may, in first approximation, be modelled by a simple hard
sphere interaction. Charge stabilization results when radicals at the surface
ionige in a polar suspeading fluid { e.g. water ), so thai the particles carry a
surface charge, leading to the formation of a double layer. Linearized Poisson-
Bolizmann theory then leads, under appropriate conditions, to & screened
Coulomb interaction of the form 1:2:
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where Uy is determined by the charge Ze carried by the Brownian parti-
cles and the dielectric permittivity € of the solvent, a is a suitable length scale
(eg. a =0 )and & = a/) is the reduced inverse Debye screening length
governed by the concentration of the counterions and added salt. The total
interaction energy ( or rather free energy ) is the sum of (2) and vy(r), re-

sulting in the celebrated DLVO potential 12, Note that the interactions may
be largely "tuned” by varying salt concentration, and hence k. In particular
at low concentration ( i.e. small & ), the screened Coulomb repulsion ”masks”
completely the Van der Waals attractions. Similarily the latter may be prac-
tically suppressed in sterically stabilized suspensions in organic solvenis by
?index-matching”. i R

To summarize the previous discussion, provided Van der Waals attractions
may be neglected, the two fundamental models, which will be extensively used
in the following, are: the hard sphere (HS) model and the screened Coulomb
( or Yukawa ) model (2). Both are "primitive” models of suspensions in so
far as they replace the suspending fluid by a structureless, inert continuum.
Solvent effects, such as solvation, Stokesian friction and hydrodynamic inter-
actions are neglecied. The two latter are velocity-dependent and hence should
not contribute to the static equilibrium properties of the suspension, like the
osmotic pressure or the pair structure, but they play of course a fundamental

role as far as dynainics are concerned. An example will be discussed in section
3.

v(r) = UOE exp(—«
T

The exact status of eqn.(2) to describe the effective interaction in charge-
stabilized suspensions has been the object of strong debate. To go beyond
the linearized Poisson-Boltzmann approach, one may treat the counter-and
salt ions as discrete entities, and use the non-linear integral equations of the
theory of liquids * to describe the highly asymmetric mixture of polyions
and microions %. An alternative approach, more similar in spirit to Poisson-
Boltzmann theory, but including correlations between microions, is presently
being investigated °, This approach is a classical Statistical Mechanies version
of the powerful ab initio Molecular Dynamics scheme developed by Car and
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Parrinello to simulate covalent and metallic systemes ®. Equations-of-motion
are derived from a Lagrangian depending on the discrete positions and ve-
locities of the polyions, while the Fourier components of the macroion charge
distribution p(F) are considered as additional dynamical variables which: are
coupled among themselves and to the polyion positions within a simple density
functional formulation. This scheme accounts for the instantaneous fluctua-
tions of p(F) and for the distortions and interpenetration of double layers
associated with neighouring polyions; the resuliing effective forces between
the lattier naturally include more-than-two-body contributions.

A fundamental difference between atomic and colloidal systems is the in-
trinsic polydispersity of the latter. While atomic "democracy” is imposed
by Quantum Mechanics, the complex chemical composition of colloidal parti-
cles leads to unavoidable distributions of size ( P(c) ) and charges { P(Z) ),
which are generally broader for smaller particles. For highly charged particles,
short-range repulsions are governed by Coulomb interactions, rather than by
intrinsic polyion size, and use of the Gibbs-Bogoliubov inequality linking the
free energy of a system of interest to that of suitably chosen reference system,
allows a mapping of charge polydispersity onto effective size polydispersity in
concentrated colloidal suspensions ‘. _

In the following we shall address the question: Do concentrated colloidal
suspensions behave as simple liquids”, by examining the phase behaviour in
section 2, the kinetic glass transition in section 3, the relation between density
profiles under gravity and the osmotic equation-of-state in section 4, while
section 5 is devoted fo highly asymmetric fluld mixtures of hard spheres which
may be regarded as a first step towards "non-primitive” models of suspensions
which would account for the discrete nature of the suspending fluid. :

2. PHASE TRANSITIONS IN
CONCENTRATED COLLOIDAL SUSPENSIONS

The ability of natural and synthetic colloids to form crystals, exhibiting
iridescence due to Bragg reflection of visible light, has been known and inves-
tigated for many years 8. A brief discussion of crystallization is given below,
within the context of the two basic models (hard sphere and Yukawa ) intro-
duced in the previous section. '

a) Hard spheres, which are the basic model for sterically stabilized colloidal
suspensions, have been the object of thorough Statistical Mechanics investiga-
tion for several decades. Since there is no energy scale, a monodisperse hard
sphere system is entirely characterized by the packing fraction n.= mps?/6,
where p = N/V is the number of particles per tinit volume. Ever since the
pioneering work of Alder and Wainwright ?, it is known that hard spheres
undergo a strongly first order phase transition from & fluid to a close-packed
(FCC or HCP) crystal; careful free energy calculations lead to the estimates
n7 = 0.49 and ns = 0.54 for the packing fractions of the coexisting fluid and

solid phases 1°. These values are in remarkable agreement with recent obser-
vations of quasi monodisperse suspensions of PMMA particles by Pusey and

Van Megen '!. These authors also observed glassy states ( characterized by
the absence of iridescence } beyond a packing fraction 5 ~~ 0.60. -
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Binary mixsures of hard spheres have been examined, within the frame-
work of the density functional theory of freezing 12, and more recently via
extensive Monte Carlo calculations of the free energy 3. The shape of the
fluid-solid phase diagram ( where the crystal is assumed to be a substitutional
solid solution )}, changes rapidly wiih the size ratio y = o1/ey, turning from
spindle shape ( 1 >y > 0.94 ) to azeotropic { 0.94 > y > 0.87 ) and finally to
eutectic. Below y ~ 0.85 the miscibility of large spheres in the crystal of small
spheres shrinks practically to zero ( in agreement with the Hume-Rothery
rule for metallic alloys ). For smaller size ratios compound formation in well
defined proportions eof small and large colloidal spheres has been studied ex-
perimentally by Yoshimura and Hachisu ® and by Bartlett and collaborators
2,14 .

The case of a polydisperse hard sphere system, with a continuous distri-
bution P(c) of diameters, has also been examined within density functional
theory 1°. The main result is that the substitutional crystal becomes ther-
modynamically, and even mechanically unstable for relative polydispersities

4172
pe = |{oc —7)%| /7 exceeding about 15%. A simple argument has been put

forward to show that this critical py should be largely independent of the pre-
cise shape of the distribution function P(c) 18, For larger py, glass formation
would be kinetically favoured over solid-solid phase separation, in view of the
very slow interdiffusion of the various species.

b} The Yukawa model, for charge-stabilized colloidal suspensions ( in the
absence of Van der Waals interactions ), has a richer phase diagram than the
hard sphere system. Indeed the "softness” of the repulsion may be tuned
by varying the reduced inverse screening length & in eqn.(2), as would result
from a change in the concentration of added salt. When « — 0, the model
( augmented by a suitable neutralizing background ) reduces to the "one-
component plasma” {OCP)} which is known to crystallize into a BCC lattice,
when the dimensionless Coulomb parameter T' = Up/kgT = Z%¢?/(akgT)
reaches the value I' = 178 17, On the other hand for large &, the potential
becomes short-ranged and steeply repulsive, so that freezing into an FCC {or
HCP) lattice may be expected. This is indeed confirmed by the anharmonic
cell model calculations of Alexander et al. 18 and by the extensive MD simu-
lations of Robbins et al. !*, The latter predict a BCC-FCC transition in the
solid for increasing &, and a BCC-FCC-fluid triple point located approximately
at I' = Up/kpT = 5 and x =~ 6. Some discrepancies between the theoretical
phase diagram for the Yukawa system and recent synchrotron X-ray measure-
ments on charged polystyrene spheres 2? seem to point to an inadequacy of
the screened Coulomb model ( derived from Poisson-Boltzmann theory ) at
high concentrations.

As stressed already in the introduction, the screened Coulomb repulsion
masks the Van der Waals attractions, thus stabilizing the suspension against
flocculation. However in the strong screening regime { i.e. in the presence of
a high concentration of added salt ) the Coulomb barrier shrinks, thus "un-
covering” the Van der Waals attraction between colloidal particles; this leads
to a secondary minimum in the DLVO potential. As long as the Coulomb
barrier is suflicient to prevent irreversible flocculation due to the singularity
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{1) at contact, the secondary minimum may be expected to induce a *hquid-
gas”-like phase separation into concentrated (fliid) and dilute (gas) phases of
the colloidal particles within the suspending medium whenever the depth ¢
of this potential minimum becomes comparable to k pT. Careful thermody-
namic perturbation calculations show that this is indeed the case, for colloidal
particles of minimum size satisfying the constraint: :

2.5 % 105 @)
¥Z(mV) '

Omin(nm) =

where Wy denotes the electric surface potential of the particles {expressed

in milli-Volts) 1. If the latter has the typical value ¥y = 25 mV, op;, ~ 400
nm.

3. BROWNIAN DYNAMICS AND
KINETIC GLASS TRANSITION

The previous section emphasized the similarities between the phase be-
haw:'iour of colloidal suspensions and that commonly observed in atomic ma-
teraa.i:_s (e.g. in simple metals and alloys). Recent dynamic light' scattering
experiments have revealed that concentrated colloidal suspensions may also
undergo, upon increasing the concentration, a "kinetic” transition towards a
metastable, non-ergodic glassy state, signalled by a non-decaying density au-
tocorrelation function over experimentally accessible time intervals, typically
a few seconds ("structural arrest”} 22,2, '

In this section, we describe results from a Brownian Dynamics simulation
of the glass transition in a charge-polydisperse colloidal fluid 2324, In partie-
ular, we are interested in structural relaxation evolving from the Brownian-
motion-like short time dynamics. Within a time step At that is small com-
pared to the Brownian time rp (i.e. the time a macroion needs to diffuse over
;a,stypicai interparticle spacing}, the displacement of the colloidal particle 7 is

BOEAD =70+ T HOM (ARR+O(A0) (1)

where ¢ is the solvent friction, taken to be independent of particle config-
uration; thus neglecting solvent-mediated hydrodynamic interactions. F is
the total force exerted on particle j by the other particles. Moreover, Ji‘.he
randorm displacement (A7) p is sampled from a Gaussian distribution of zero
mean and variance 6kgTA#/¢. The basic equation (4) for irreversible Brown-

ian Dynamics (BD) should be contrasted with reversible Molecular Dynamics
(MD) governed by the short time expansion

it + AL) = F(2) + T (1) At + %Fj(t)(m)? + O((At)®) (5}

where v} is the velocity and m the particle mass. This is valid for atomic
systems and the kinetic glass transition for this kind of dynamics has been
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extensively studied by computer simulations 26, experiments 27 and mode
coupling thearies 28, However, (5) is not applicable to colloidal dynamics due
to the presence of solvent friction. In the following, we will compare both kinds
of dynarnics, Whereas the difference in the short time behaviour between BD
and MD is obvious, it turns out that the scenario of the kinetic glass transition
1s qualitatively different, at least at intermediate times.

In the Yukawa model adopted here, the forces f} are derived from the
potential (2) suitably generalized to a charge-polydisperse situation *:

aZiZ; exp(—m(r —a)

V;.j('r) = U{]; Zz a

)
Here Uy and a set the natural energy and length scale of the colloidal particles

and, together with ¢, they define the Brownian time scale rg = €a2/Uj.
For comparison, the typical time scale for Newtonian dynamics is set by the

mass as Ty — (maQ/Ug}i/z. The decay parameter &, due to counterions and
added salt, is chosen to be fixed, £ = 7, for the simulation and the charges
%; are sampled from a Schultz-distribution ?* with a mean valence 7 and a
relative charge-polydispersity pz = 0.5. In such strongly polydisperse systems,
crystallization is bypassed and formation of an amorphous solid is favoured
15,18 The density is chosen to be p = a~% and the system is slowly cooled
from the temperature T = kgT /Uy = 0.45 down to T* = 0.10. '

A very clear-cut dynamical diagnostic of the kinetic glass transition is

provided by the rapid change in behaviour of the self-part of the Van Hove
correlation function

N
Gs(r,t) = }1\7 <SE-FHOEHE)> W)
=1 Co

The function P(r,t) = 4mr?aG g(r,t) shown in Figures 1 and 2 is the proba-
bility density for finding a particle at a distance r from its original position
after a time t. Above the glass transition, P(r,¢) tends rapidly to its hydro-
dynamic limit governed by the long-time diffusion constant D; whereas for
1" = Tg the structure becomes frozen and particles move by thermal acti-
vated hopping processes which lead to a build-up of a small secondary peak
or shoulder at the mean interparticle spacing a. The hopping processes occur
despite the absence of any phonon assistance in BD and can be seen directly
by following the trajectories of low-charge particles 23, Strictly speaking, this
crossover is smooth, but it occurs within a very narrow temperature range,
and, by this diagnostic, a clearcut estimate of the glass transition temperature
Te = kpTa/Uy is 0.115 < T} < 0.120. Correspondingly, the long-time dif-
fusion constant Dy drops to very low values near the glass transition. If the
temperature is above and not too close to T¢ the data can be well fitted by a
power-law Dy = A(T* — T4) with v o 1.4. At this point we remark that the
behaviour in the MD case is very similar. In particular, the glass transition
occurs at the same temperature as in the Brownian case.
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Fig. 1 The function P(r,t) = dnrlaGg(r,t) versus reduced distance
r/a caleulated with Brownian Dynamies; the curves from left o right (or top
to bottom) are for increasing iitme arguments. Results for T* = 0.13 and
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Fig. 2 Same as Fig. 1 but now for TF =0.11 and #/7p = 133, 267,400.
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_ Structural relaxation may be conveniently characterized by examining the
time-dependence of the density auto-correlation function, or intermediate scat.-
tering function for wavevectors kg in the vicinity of the main peak of the
static structure factor. In this range of wavevectors, this function is close to
the spatial Fourier transform Fg(kg,1) of Gg(r,t). In Figure 3, the relax-
ation of Fig{kp,t) is shown on a logarithmic time scale. At the glass transition
(T = fg), there is no clear build-up of a plateau nor a clear separation into
two different time-scales. The relaxation for large times can tentatively be
identified with a-relaxation. Structural arrest occurs only at a temperature
well below Tg;. This is different from the MD-case, which is illustrated in Fig-
ure 4. The underlying glass transition, that occurs at the same temperature as
in the BD case, is accompanied by the build-up of a plateau and a separation
of time scales. The spectrum Sg(kq,w) of Fg(kg,t) exhibits a peak at in-
termediate frequencies, that may be tentatively associated with G-relaxation.
For BD, however, this peak is missing. Thus one important conclusion is that
B-relaxation is absent for Brownian dynamics.
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Fig. 38 Fg(k,t) versus t* = t/r ; 1
= t/rp on a logarithmic seale for k = kg =
7-4/a and (from bottom to top) T* = 0.13,0.12,0.11,0.10 (Brownian Dynam-

ics ).
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Fig. 4 Fg(k,t) versus t' = t/7y on a logarithmic scale for k = ko =
7.4/a and (from bottom to top) T* = 0.13,0.12,0.11,0.10 (Newtonian Dy-
namics). '

The different diffusive behaviour of low-charge and high-charge particles
near the kinetic glass transition was studied in detail in Ref. 24 Tt was found
that the ratio of the corresponding long-time diffusion constants varies con-
siderably near the glass transition. This implies that the high-charge particles
"freeze” first and then the low-charge particles follow, but everything happens
in a smooth manner as the system is cooled. :

4, OSMOTIC PRESSURE FROM DENSITY PROFILES

The equation-of-state of simple atomic or molecular fluids contains much
information about the mutual interactions between particles. The variation
of the pressure with density and temperature is more sensitive to details of
the interactions than, for instance, the pair structure, as measured by X-ray
or neutron diffraction. A good illustration of this sensitivity is provided by
the semi quantitative information about atomic pair potentials gained from
accurate measurements of the second virial coefficient 2%, Similar procedures
have not yet been systematically persued in colloidal suspensions, because the
osmotic pressure of colloids is generally too weak to be directly measurable.
A straightforward application of van 't Hofl’s law ( valid for non-interacting
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particles in suspension ) shows that the order of magnitude of the osmotic
pressure exerted by sub-micronic particles is typically 1 Pascal or less at room
temperature,

However, contrarily to the case of atomic-size particles, the gravitational
energy of colloidal particles is easily comparable to the thermal energy kg7
Hence it is not surprising that the density of suspended particles is highly
inhomogeneous under gravity. This observation was first exploited by Perrin
30 W..'h.O was able to estimate Boltzmann’s constant from a measurement of the
density profile p(z} of dilute suspensions, where interactions between colloidal
particles may be neglected, resulting in the familiar exponential density profile
( barometric law ). :

Morp generally, a careful implementation of the osmotic equilibrium of the
suspension shows that the local osmotic pressure P(z) and density p(z) are
simply related by the hydrostatic equation:

2 p(z) = ~mge(2) ®)

where m is the buoyant mass 3 and P(z) = P(p(2)) under isothermal
conditions. In the infinite dilution limit, P(z) = kgTp(z), and Perrin’s expo-
nential profile immediately follows. For concentrated suspensions, the profile
may be calculated from the knowledge of the equation-of-state P(p) of a ho-
mogeneous fluid of interacting colloids (local density approximation). Such
a calculation can be carried out analytically, leading to a sigmoidally-shaped
density profile 31,

Recenf,ly, it was suggested that the whole procedure may be inverted, i.e.
the osmotic equation-of-state P(p) may be extracted from accurate measure-

ments of p(z) 32, Indeed, direct integration of (8) leads to:

BF(z)= ::(/{00,0(7:')(1,2r (9)

where - 1/_kBT and o is the characteristic inverse gravitational length,
o= Amg, which is typically of the order of a few particle diameters. Elimina-
tion of the altitude z between the measured p{z) and the resulting P(2) yields
directly P(p). :

This inversion procedure was tested in Ref. 2? by extensive Monte Carlo
'(MC) c_alculations of the hard sphere and Yukawa systems subjected to grav-
ity ( with 0.1Sa0 <1 ). Coarse-grained density profiles (z) were calculated
by convoluting the simmulation data for p(z) with a resolution function w(z)
of }mdﬁh comparable to the particle size, in order to smooth out the oscil-
lations near z = 0 due to layering against the hard wall at the bottom of
the sample. The local density approximation leading to eqn.(8) applies to
the coarse-grained p(z), and the resulting equation-of-state, obtained by the
previously described inversion procedure, agree well with the known homoge-
neous hard sphere and Yukawa data. These calculations strongly emphasize
the sensitivity of the density profiles to the assumed pair interactions. Sim-
ilar inversions based on true experimental (rather than numerical!) density
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profiles would be highly desirable, and could yield useful, although indirect,
information about colloida! interactions.

5. TWO FLUID MODEL OF
COLLOIDAL SUSPENSIONS

A suspension may be viewed as a "mixture” of two fluids: the "solvent”
made up of atomic-size particles (fluid 1), and the fluid of mesoscopic colloidal
particles (fluid 2). In view of the very small size ratio y = o'1/0y ( typically
10~1 > > 107* ), luid 1 may generally be considered to be a continuum on
the length and time scales of the colloidal particles ( "primitive” model ). As
illustrated in section 3, this continuum strongly affects the dynamics of the
latter, via Stokesian friction and hydrodynamic interactions, but should have
no influence of the static properties of fluid 2. Indeed no account is taken of
the suspending fluid in statistical interpretation of the pair structure of the
colloidal fluid, as measured by diffraction experiments 2,

In this section we briefly review some recent theoretical resulis for the sim-
plest "discrete solvent” model of a suspension, namely a highly asymmetric
binary mixture of addiiive hard spheres 33,3435 The three partial pair distri-
bution functions g,z(r) of this two component system are related to the direct
correlation functions c,5(r) via the familiar Ornstein-Zernike (OZ) relations
3.

ho:ﬁ(T) = gaﬁ(r) =1= Caﬁ(r) -+ pZ TyCoy * h'rﬁ{'r) (10)
¥

where z, denotes the number concentration of species v (1 < &, 8,7 < 2)
and p is the total number density, while * denotes a convolution product. The
O relations (8) must be supplemented by a closure relation; for hard sphere
systems the most common relation is the Percus Yevick {PY) closure:

Gapl7) = O(r = 505)[1 + 7a5(r)] o

where © denotes the Heavyside step-function, and o5 = hag — Cug- The
set of eqns.(10)-(11) has been solved analytically 3 and leads to the prediction
of complete miscibility of fluid hard sphere mixtures, irrespective of the size
ratioy = ¢1/a2 37, However, upon closer inspection, it may be shown that the
contact value of the pair distribution of large spheres, gﬁy(f = 0';')' diverges
as 1/y when the size ratio goes to zero 34,35 This effective "stickiness” of
large spheres is a manifestation of the "osmotic depletion” phenomenon pre-
dicted eazlier for dispersions of spherical colloids and non-adsorbing polymer
coils, modeled by interpenetrating spheres 3839 The osmotic depletion effect
is known to drive phase separation, which is not surprising in view of the
non-additivity of colloid and polymer diameters 40, Despite the prediction of
complete miscibility by the PY theory for hard sphere mixtures with additive
diameters, it is not unreasonable to explore the possibility of phase separation
on the basis of more accurate integral equations.
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PY theory is known to exhibit thermodynamic inconsistency, as illustrated
by the significant differences of the equations-of-state derived from the virial
or compressibility relations ®. This inconsistency may be overcome by the use
of thermodynamically self-consistent closures, among which one of the most

successful is that due to Rogers and Young (RY) | which reads for hard
spheres:

exp[Yag(r) fas(r)] — 1}
faﬁ('r)

where the switching functions fag{r) are conveniently chosen to be of
the form 1 - exp(£,4r), with £ap assumed to be of the simple scaling form
€ap = £/04g- The single dimensionless parameter ¢ is varied mntil the virial
and compressibility estimates of the equation-of-state coincide.

We have solved the RY equations numerically, for many values of the two
partial packing fractions 7, = wpz4ol /6, and for several size ratios y 33 The
calculated pressure agrees surprisingly well, for all cases that were considered,
with the semi-empirical equation-of-state of Mansoori et al. 42, Spinodal
instability of the mixture is signalled by the divergence of the long wavelength
limit of the concentration-concentration structure factor 3:

90a(7) = O — o0p) {1+ (12)

. NkgT
lim Sce(k) = —5="—8
k0 (0°G/0z3) N pT

(13)

In figure 5 we show constant reduced pressure { P* = Paf/kBT ) plots of
A = zyz3/5:c(0), as obtained from the numerical solutions of the RY equa-

{ions, versus mé’fs, for the size ratio y = 0.1. At low pressures, (P*<0.05),
there is complete miscibility for all concentrations zg. At higher pressures
(P* > 0.1), A drops to zero as g is increased, so that the corresponding hard
sphere mixtures are thermodynamically unstable. Thus we predict a phase
separation of highly asymmetric hard sphere mixtures, beyond a pressure-
dependent concentration of large ( colloidal ) spheres immersed in the discrete
suspending medium of small spheres. The critical pressure P} above which
phase separation occurs is in the range 0.1> P} >0.05. The conjugate phase
may be either another fluid phase (richer in large spheres), or one or several
solid phases of different compositions. In the former case, there exists a fluid-
fluid-solid triple point at a reduced pressure P* above PF, while in the latter
the second fluid phase ( rich in large spheres ) is pre-empted by crystallization.

The behaviour of A as a function of w;/g is somewhat unusual for P* =
0.07, where A goes negative twice as z3 increases. The first "loop” is com-
patible with fluid-fluid coexistence, but the second ”loop” occurs at very high
packing fractions 7y of the large spheres, suggesting that this second phase
separation is in fact pre-empted by cristallization. Integral equations, based

on the explicit assumption of translational invariance, are of course uncapable
of accounting for fluid-solid coexistence.
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Fig. 5 Ratio zyza/S8:(0) versus :32/3 for a size ratio y = 0.1 and for
P* = 0.5 (full curve), 0.2 (squares), 0.1 (dashed curve), 0.07 (dots), 0.05
(triangles) and 0.01 (circles).

Although a complete phase diagram for highly asymmetric hard sphere
mixtures cannot be drawn yet, it is clear that the RY results‘ strongly suggest
a lack of miscibility of the small and large spheres in the fluid phase.
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